ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 11 (1972), S. 141-146 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-27
    Description: Increasing computing resources allow us to run weather and climate models at horizontal resolutions of 1–10 km. At this range, which is often referred to as the convective gray zone, clouds and convective transport are partly resolved, yet models may not achieve a satisfactory performance without convective parameterizations. Meanwhile, large fractions of the gravity wave (GW) spectrum become resolved at these scales. Convectively generated GWs are sensitive to spatiotemporal characteristics of convective cells. This raises the question of how resolved GWs respond to changes in the treatment of convection. Two global simulations with a horizontal grid spacing of 5 km are performed, one with explicit and one with parameterized convection. The latitudinal profiles of absolute zonal-mean GW momentum flux match well between both model configurations and observations by satellite limb sounders. However, the simulation with explicit convection shows ∼30–50% larger zonal-mean momentum fluxes in the summer hemisphere subtropics, where convection is the dominant source of GWs. Our results imply that changes in convection associated with the choice of explicit versus parameterized convection can have important consequences for resolved GWs, with broad implications for the circulation and the transport in the middle atmosphere. © 2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-13
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-26
    Description: A long-standing task in climate research has been to distinguish between anthropogenic climate change and natural climate variability. A prerequisite for fulfilling this task is the understanding of the relative roles of external drivers and internal variability of climate and the carbon cycle. Here, we present the first ensemble simulations over the last 1200 years with a comprehensive Earth system model including a fully interactive carbon cycle. Applying up-to-date reconstructions of external forcing including the recent low-amplitude estimates of solar variations, the ensemble simulations reproduce temperature evolutions consistent with the range of reconstructions. The 20th-century warming trend stands out against all pre-industrial trends within the ensemble. Volcanic eruptions are necessary to explain variations in pre-industrial climate such as the Little Ice Age; yet only the strongest, repeated eruptions lead to cooling trends that stand out against the internal variability across all ensemble members. The simulated atmospheric CO2 concentrations exhibit a stable carbon cycle over the pre-industrial era with multi-centennial variations somewhat smaller than in the observational records. Early land-cover changes have modulated atmospheric CO2 concentrations only slightly. We provide a model-based quantification of the sensitivity (termed γ) of the global carbon cycle to temperature for a variety of climate and forcing conditions. The magnitude of γ agrees with a recent statistical assessment based on reconstruction data. We diagnose a distinct dependence of γ on the forcing strength and time-scales involved, thus providing an explanation for the systematic difference in the observational estimates for different segments of the last millennium.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-26
    Description: A long-standing task in climate research has been to distinguish between anthropogenic climate change and natural climate variability. A prerequisite for fulfilling this task is the understanding of the relative roles of external drivers and internal variability of climate and the carbon cycle. Here, we present the first ensemble simulations over the last 1200 years with a comprehensive Earth system model including a fully interactive carbon cycle. Applying up-to-date reconstructions of external forcing including the recent low-amplitude estimates of solar variations, the ensemble simulations reproduce temperature evolutions consistent with the range of reconstructions. The 20th-century warming trend stands out against all pre-industrial trends within the ensemble. Volcanic eruptions are necessary to explain variations in pre-industrial climate such as the Little Ice Age; yet only the strongest, repeated eruptions lead to cooling trends that differ significantly from the internal variability across all ensemble members. The simulated atmospheric CO2 concentrations exhibit a stable carbon cycle over the pre-industrial era with multi-centennial variations somewhat smaller than in the observational records. Early land-cover changes have modulated atmospheric CO2 concentrations only slightly. We provide a model-based quantification of the sensitivity (termed γ) of the global carbon cycle to temperature for a variety of climate and forcing conditions. We diagnose a distinct dependence of γ on the forcing strength and time-scales involved, thus providing a possible explanation for the systematic difference in the observational estimates for different segments of the last millennium.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-08
    Description: The spatio-temporal variability of integrated water vapour (IWV) on small-scales of less than 10 km and hours is assessed with data from the two months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sunphotometer, radiosondes, Raman Lidar, infrared and near infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of standard deviation (≤ 1 kg m−2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Non-hydrostatic modelling framework (ICON) which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3–4 km or time of 10–15 min induce IWV variabilities in the order of 4 kg m−2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (〉 1 kg m−2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is sufficient to capture the mean standard deviation of IWV. The present study shows that instrument sampling plays a major role when climatological information, in particular the mean diurnal cycle of IWV, is determined.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-09
    Description: The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m−2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3–4 km or time of 10–15 min induce IWV variabilities on the order of 0.4 kg m−2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (〉 1 kg m−2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is sufficient to capture the mean standard deviation of IWV. The present study shows that instrument sampling plays a major role when climatological information, in particular the mean diurnal cycle of IWV, is determined.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1972-01-01
    Print ISSN: 0196-4305
    Electronic ISSN: 1541-5716
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-07-04
    Description: Clouds play a key role in the Earth’s climate system hence understanding fully their driving processes and distribution patterns is of importance to better characterize and model future states of the climate. A common approach to characterize clouds is through cloud regimes. Each type demonstrates very different radiative properties and interacts in various ways with aerosol particles in the atmosphere. Nevertheless, it has proven challenging to characterize cloud regimes objectively through remote sensing data.Building upon the method we previously developed, we combine synoptic observations and passive satellite remote-sensing retrievals to constitute a database of cloud types and cloud properties to eventually train a cloud classification algorithm. Cloud regime labels are provided through the global marine meteorological observations dataset (UK Met Office, 2006) which is comprised of near-global synoptic observations. The cloud classification model is built on different cloud-top and cloud optical properties (Level 2 products MOD06/MYD06 from the MODIS sensor) extracted in the vicinity of the observation. To make full use of the large quantity of remote sensing data available and to investigate the variety in cloud settings, a convolutional variational auto-encoder (VAE) is applied as a dimensionality reduction tool in a first step. The cloud classification task is subsequently performed drawing on the constructed latent representation of the VAE. Using simulation data produced by the ICON global climate model we can further investigate characteristics of the cloud regimes, their representation and distribution.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...