ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-24
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-30
    Description: Historic events such as wars and epidemics have been suggested as explanation for decreases in atmospheric CO 2 reconstructed from ice cores because of their potential to take up carbon in forests regrowing on abandoned agricultural land. Here, we use a coupled climate–carbon cycle model to assess the carbon and climate effects of the Mongol invasion (~1200 to ~1380), the Black Death (~1347 to ~1400), the conquest of the Americas (~1519 to ~1700), and the fall of the Ming Dynasty (~1600 to ~1650). We calculate their impact on atmospheric CO 2 including the response of the global land and ocean carbon pools. It has been hypothesized that these events have contributed to significant increases in land carbon stocks. However, we find that slow regrowth and delayed emissions from past land cover change allow for small increases of the land biosphere carbon storage only during long-lasting events. The effect of these small increases in land biosphere storage on global CO 2 is reduced by the response of the global carbon pools and largely offset by concurrent emissions from the rest of the world. None of these events would therefore have affected the atmospheric CO 2 concentration by more than 1 ppm. Only the Mongol invasion could have lowered global CO 2 , but by an amount too small to be resolved by ice cores.
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-23
    Description: Land-cover change (LCC) happens locally. However, in almost all simulation studies assessing biogeophysical climate effects of LCC, local effects (due to alterations in a model grid box) are mingled with nonlocal effects (due to changes in wide-ranging climate circulation). This study presents a method to robustly identify local effects by changing land surface properties in selected “LCC boxes” (where local plus nonlocal effects are present), while leaving others unchanged (where only nonlocal effects are present). While this study focuses on the climate effects of LCC, the method presented here is applicable to any land surface process that is acting locally but is capable of influencing wide-ranging climate when applied on a larger scale. Concerning LCC, the method is more widely applicable than methods used in earlier studies. The study illustrates the possibility of validating simulated local effects by comparison to observations on a global scale and contrasts the underlying mechanisms of local and nonlocal effects. In the MPI-ESM, the change in background climate induced by extensive deforestation is not strong enough to influence the local effects substantially, at least as long as sea surface temperatures are not affected. Accordingly, the local effects within a grid box are largely independent of the number of LCC boxes in the isolation approach.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-06
    Description: Atmospheric water vapour tracers (WVTs) are an elegant tool to determine source–sink relations of moisture "online" in atmospheric general circulation models (AGCMs). However, it is sometimes desirable to establish such relations "offline" based on already existing atmospheric data (e.g. reanalysis data). One simple and frequently applied offline method is 2-D moisture tracing. It makes use of the "well-mixed" assumption, which allows for treating the vertical dimension integratively. Here we scrutinise the "well-mixed" assumption and 2-D moisture tracing by means of analytical considerations in combination with AGCM-WVT simulations. We find that vertically well-mixed conditions are seldom met. Due to the presence of vertical inhomogeneities, 2-D moisture tracing (i) neglects a significant degree of fast-recycling, and (ii) results in erroneous advection where the direction of the horizontal winds varies vertically. The latter is not so much the case in the extratropics, but in the tropics this can lead to large errors. For example, computed by 2-D moisture tracing, the fraction of precipitation in the western Sahel that originates from beyond the Sahara is ~40%, whereas the fraction that originates from the tropical and Southern Atlantic is only ~4%. According to full (i.e. 3-D) moisture tracing, however, both regions contribute roughly equally, showing that the errors introduced by the 2-D approximation can be substantial.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-22
    Description: Atmospheric water vapour tracers (WVTs) are an elegant tool to determine source-sink relations of moisture "online" in atmospheric general circulation models (AGCMs). However, it is sometimes desireable to establish such relations "offline" based on already existing atmospheric data (e.g. reanalysis data). One simple and frequently applied offline method is 2-D moisture tracing. It makes use of the "well-mixed" assumption, which allows to treat the vertical dimension integratively. Here we scrutinise the "well-mixed" assumption and 2-D moisture tracing by means of analytical considerations in combination with AGCM-WVT simulations. We find that vertically well-mixed conditions are seldomly met. Due to the presence of vertical inhomogeneities, 2-D moisture tracing (I) neglects a significant degree of fast-recycling, and (II) results in erroneous advection where the direction of the horizontal winds varies vertically. The latter is not so much the case in the extratropics, but in the tropics this can lead to large errors. For example, computed by 2-D moisture tracing, the fraction of precipitation in the Western Sahel that originates from beyond the Sahara is ~40%, whereas the fraction that originates from the tropical and Southern Atlantic is only ~4%. Full (i.e. 3-D) moisture tracing however shows that both regions contribute roughly equally, which reveals the results of an earlier study as spurious. Moreover, we point out that there are subtle degrees of freedom associated with the implementation of WVTs into AGCMs because the strength of mixing between precipitation and the ambient water vapour is not completely provided by such models. We compute an upper bound for the resulting uncertainty and show that this uncertainty is smaller than the errors associated with 2-D moisture tracing.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2014-06-17
    Description: The forest, savanna, and grassland biomes, and the transitions between them, are expected to undergo major changes in the future, due to global climate change. Dynamic Global Vegetation Models (DGVMs) are very useful to understand vegetation dynamics under present climate, and to predict its changes under future conditions. However, several DGVMs display high uncertainty in predicting vegetation in tropical areas. Here we perform a comparative analysis of three different DGVMs (JSBACH, LPJ-GUESS-SPITFIRE and aDGVM) with regard to their representation of the ecological mechanisms and feedbacks that determine the forest, savanna and grassland biomes, in an attempt to bridge the knowledge gap between ecology and global modelling. Model outcomes, obtained including different mechanisms, are compared to observed tree cover along a mean annual precipitation gradient in Africa. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the ecology of tropical ecosystems in general, and of savannas in particular, we identify two main mechanisms that need an improved representation in the DGVMs. The first mechanism includes water limitation to tree growth, and tree-grass competition for water, which are key factors in determining savanna presence in arid and semi-arid areas. The second is a grass-fire feedback, which maintains both forest and savanna occurrences in mesic areas. Grasses constitute the majority of the fuel load, and at the same time benefit from the openness of the landscape after fires, since they recover faster than trees. Additionally, these two mechanisms are better represented when the models also include tree life stages (adults and seedlings), and distinguish between fire-prone and shade-tolerant savanna trees, and fire-resistant and shade-intolerant forest trees. Including these basic elements could improve the predictive ability of the DGVMs, not only under current climate conditions but also and especially under future scenarios.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-10-25
    Description: Moisture recycling estimates are diagnostic measures that could ideally be used to deduce the response of precipitation to modified land-evaporation. Recycling estimates are based on moisture-budget considerations in which water is treated as a passive tracer. But in reality water is a thermodynamically active component of the atmosphere. Accordingly, recycling estimates are applicable to deduce the response to a perturbation only if other mechanisms by which evaporation affects climate do not dominate the response – a condition that has not received sufficient attention in the literature. In our analysis of what moisture recycling estimates tell us, we discuss two such additional mechanisms that result from water's active role. These are (I) local coupling, by which precipitation is affected locally via the thermal structure of the atmosphere, and (II) the atmospheric circulation, by which precipitation is affected on a large spatial scale. We perform two global climate model experiments: One with and another without continental evaporation. By this extreme perturbation we test the predictive utility of a certain type of recycling measure, the "continental recycling ratio". Moreover, by such a strong perturbation the whole spectrum of possible responses shows up simultaneously, giving us the opportunity to discuss all concurrent mechanisms jointly. The response to this extreme perturbation largely disagrees with the hypothesis that moisture recycling is the dominant mechanism. Instead, most of the response can be attributed to changes in the atmospheric circulation, while the contributions to the response by moisture recycling as well as local coupling, though noticeable, are smaller. By our case study it is not possible to give a general answer to the question posed in the title, but it demonstrates that recycling estimates do not necessarily mirror the consequences of land-use change for precipitation.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-10-23
    Description: On their journey over large land masses, water molecules experience a number of precipitation–evaporation cycles (recycling events). We derive analytically the frequency distributions of recycling events for the water molecules contained in a given air parcel. Given the validity of certain simplifying assumptions, the frequency distribution of recycling events is shown to develop either into a Poisson distribution or a geometric distribution. We distinguish two cases: in case (A) recycling events are counted since the water molecules were last advected across the ocean–land boundary. In case (B) recycling events are counted since the water molecules were last evaporated from the ocean. For case B we show by means of a~simple scale analysis that, given the conditions on earth, realistic frequency distributions may be regarded as a mixture of a Poisson distribution and a geometric distribution. By contrast, in case A the Poisson distribution generally appears as a reasonable approximation. This conclusion is consistent with the simulation results of an earlier study where an atmospheric general circulation model equipped with water vapor tracers was used. Our results demonstrate that continental moisture recycling can be interpreted as a Poisson process.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-12
    Description: Moisture evaporated from the continents (recycled moisture) contributes up to 80% to the total atmospheric moisture content and, hence, precipitation in some regions. Recycling estimates are traditionally used to indicate a region's rainfall-dependence on land-surface evaporation. Accordingly, recycling estimates are employed to deduce the hydrological consequences of land-cover change. However, moisture is not a passive but an active constituent of the atmosphere. Recent studies indicate that at small scales (up to 1000 km) local to regional evaporation-precipitation coupling by far dominates the atmospheric precipitation response, while the water-balance effect from moisture recycling in the traditional sense seems to be of minor importance. The value of moisture recycling estimates as indicator for consequences of land-cover change is therefore questionable. However, since atmospheric moisture is still subject to mass conservation, the relevance of moisture recycling may come into play at the continental scale. To explore the relevance of recycling estimates regarding land-cover change at the continental scale, we conduct two global experiments with an atmospheric general circulation model: (I) with present-day conditions and (II) with extreme land-cover change conditions, namely with totally suppressed continental evaporation. Using the simulated fields of moisture, wind, and evaporation from the present-day experiment, we quantify continental moisture recycling with a vertically integrating tracing scheme. We then compare the computed recycling patterns with the hydrological changes that follow the suppression of continental evaporation. While under present-day conditions the fraction of recycled moisture increases from continental upstream to downstream regions with respect to the prevailing winds, the suppression of continental evaporation leads to severe precipitation loss in almost all continental regions, no matter if situated upstream or downstream. Over the ocean the hydrological response is ambigious, even where under present-day conditions large fractions of the atmospheric moisture stem from continental evaporation. This suggests that continental moisture recycling can not act across large ocean basins. Over land the absence of evaporative cooling at the surface leads to substantial warming which acts to suppress precipitation. In large parts of the continents the precipitation decrease compensates for much of the missing evaporation, such that the continental moisture-sink is not much amplified. Consequently, the atmospheric moisture content is not systematically reduced in the evaporation-free experiment, as would be necessary for the traditional moisture recycling mechanism to be active. Noteworthy exceptions are continental regions that are substantial moisture sources for some time of the year, first of all tropical wet-dry climates during the dry season. Apart from these exceptions, our results challenge the relevance of moisture recycling estimates for the hydrological consequences of land-cover change even at the continental scale.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...