ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.
    Keywords: AERODYNAMICS
    Type: NASA-TM-87453 , RM-799 , NAS 1.15:87453
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-83130 , L-14204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: Surface heat transfer distributions are presented for swept wing semispan models having trailing edge elevon ramp angles of 0, 10, 20, and 30 degrees. The wing sweepback angles are 0, 50, and 70 degrees. The models have attachable cylindrical and flat plate center bodies and various attachable wing-tip fins. The data, obtained for a 0 degree angle of attack, a free stream Mach number of 6, and a wing root chord Reynolds number of about 17,000,000, reveal considerably larger regions of elevon induced thermal loads on adjacent surfaces than would be suggested by fully attached flow analyses.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-74045 , L-11461
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TN-D-7835 , L-9792
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.
    Keywords: FLUID MECHANICS
    Type: NASA-TN-D-7649 , L-9458
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Surface pressure distributions and heat transfer distributions were obtained on wing half-models in regions where three dimensional separated flow effects are prominent. Unswept and 50 deg and 70 deg swept semispan wings were tested, for trailing-edge-elevon ramp angles of 0 deg, 10 deg, 20 deg, and 30 deg, with and without cylindrical and flat plate center bodies and with and without various wing-tip plates and fins. The data, obtained for a free stream Mach number of 6 and a wing-root-chord Reynolds number of 18.5 million, reveal considerably larger regions of increased pressure and thermal loads than would be anticipated using non-separated flow analyses.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-1356 , L-12636
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: Surface pressure distributions are presented for regions where three-dimensional separated flow effects are prominent on swept-wing-elevon-end-plate models of 0 degree, 50 degree, and 70 degree sweepback, and with 0 degree, 10 degree, 20 degree, and 30 degree elevon deflections. Surface-oil-flow photographs and pressure distributions on the flat-plate wing, elevon, and end-plate surfaces are presented for numerous geometric variations, including various spacings between the elevon and the end plate, with and without a tip fin. The data, for a free-stream Mach number of 6 and a wing-root-chord Reynolds number of 20 x 10 to the sixth power, reveal considerably larger regions of elevon induced loads on the adjacent end-plate surface than would be anticipated by using inviscid flow analyses.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-X-3470 , L-11090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...