ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-02-06
    Description: The high incidence of skin cancers in the Caucasian population is primarily due to the accumulation of DNA damage in epidermal cells induced by chronic ultraviolet B (UVB) exposure. UVB-induced DNA photolesions, including cyclobutane–pyrimidine dimers (CPDs), promote mutations in skin cancer driver genes. In humans, CPDs are repaired by nucleotide excision repair (NER). Several commonly used and investigational medications negatively influence NER in experimental systems. Despite these molecules’ ability to decrease NER activity in vitro, the role of these drugs in enhancing skin cancer risk is unclear. In this study, we investigated four molecules (veliparib, resveratrol, spironolactone, and arsenic trioxide) with well-known NER-inhibitory potential in vitro, using UVB-irradiated CHO epithelial and HaCaT immortalized keratinocyte cell lines. Relative CPD levels, hypoxanthine phosphoribosyltransferase gene mutation frequency, cell viability, cell cycle progression, and protein expression were assessed. All four molecules significantly elevated CPD levels in the genome 24 h after UVB irradiation. However, veliparib, spironolactone, and arsenic trioxide reduced the mutagenic potential of UVB, while resveratrol did not alter UVB-induced mutation formation. UVB-induced apoptosis was enhanced by spironolactone and arsenic-trioxide treatment, while veliparib caused significantly prolonged cell cycle arrest and increased autophagy. Spironolactone also enhanced the phosphorylation level of mammalian target of rapamycin (mTOR), while arsenic trioxide modified UVB-driven mitochondrial fission. Resveratrol induced only mild changes in the cellular UVB response. Our results show that chemically inhibited NER does not result in increased mutagenic effects. Furthermore, the UVB-induced mutagenic potential can be paradoxically mitigated by NER-inhibitor molecules. We identified molecular changes in the cellular UVB response after NER-inhibitor treatment, which may compensate for the mitigated DNA repair. Our findings show that metabolic cellular response pathways are essential to consider in evaluating the skin cancer risk–modifying effects of pharmacological compounds.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-14
    Description: Background: Psoriatic patients have considerably higher odds of being obese compared with the general population; however, the exact pathophysiological link between psoriasis and obesity needs to be elucidated. Methods: To investigate the association of psoriasis with established obesity-related gene variants, we conducted a population-based case-control study including 3541 subjects (574 psoriasis cases and 2967 controls from the general Hungarian population). Genotyping of 20 SNPs at ADIPOQ, BDNF, FTO, GNPDA2, LEPR, MC4R, NEGR1, NPY, PPARG, TMEM18, and UCP2 were determined, and differences in genotype and allele distributions were investigated. Multiple logistic regression analyses were implemented. Results: Analysis revealed an association between the G allele of the rs1137101 polymorphism (LEPR gene) and obesity risk (OR: 3.30 (1.45; 7.50), p = 0.004) in the early-onset group of psoriatic patients. Furthermore, the T allele of rs925946 polymorphism (BDNF gene) was also associated with increased risk of obesity in early-onset psoriasis (OR: 2.26 (1.24; 4.14) p = 0.008). Conclusions: Our results suggest that in psoriatic patients, there are prominent differences in the causes of obesity that should be accounted for, including not only environmental factors but also patient characteristics, such as the time of disease onset as well as genetic factors.
    Electronic ISSN: 2075-1729
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...