ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-01-08
    Description: The perennially ice-covered Central Arctic is changing rapidly due to extensive sea-ice retreat and the loss of multiyear ice. The thinning of the ice allows more light to reach the water column enhancing productivity. These changes in the under ice ecosystem can lead to under-ice phytoplankton blooms which may increase grazing and carbon export. However, our knowledge of the interactions between sea ice, sub-ice and under-ice communities is still poor, especially in high latitudes. A key limitation is observations of the undisturbed under-ice flora and fauna. To address this gap in observations, the Nereid Under Ice remotely operated vehicle (NUI) was developed, equipped with thin optical fibre and acoustic navigation to explore under-ice environments at distances up to 20 km away from research vessels from which it is deployed. This vehicle can accommodate various interdisciplinary payloads including HD video cameras, CTD and biological sensor packages including chlorophyll fluorometers, CDOM optical sensors and optical nitrate sensors. Research capabilities of NUI were tested during the RV Polarstern PS86 expedition to the Aurora Vent field, at 83ºN 6°W north-east of Greenland. From 12 to 30 July 2014 the evolution of a phytoplankton bloom below 2m thick multiyear ice was followed. Video footage obtained with NUI directly below the ice showed the development of algal mats at the bottom of the ice floe and a succession of zooplankton blooms presumably causing a decline of the phytoplankton bloom. Polar copepods, ctenophores and appendicularia could be identified forming dense biomasses underneath the ice. From NUI’s chlorophyll, CDOM and nitrate profiles, steep gradients of high biogeochemical activity were detected in the mixed layer (upper 6-15 m), which could not be observed by the ship-deployed CTD. These structures were identified as layers of sinking particles with different optical characteristics. This poster summarizes the advantages of robotic observations over classical ship-based sampling for the study of under ice communities. In vivo observations of phyto- and zooplankton communities are needed to better assess the impacts of changing sea-ice conditions on under ice organisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-08
    Description: The changes in physical properties of sea ice such as decreased thickness and increased melt pond cover observed over the last decades severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role in the amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three-dimensional under-ice topography and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties during summer on the spatial variability of light transmittance. Results show that surface properties dominate the spatial distribution of the under-ice light field on small scales (〈1000m²), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we suggest an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...