ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-14
    Description: Crosstalk between the oestrogen receptor (ER) and ERBB2/HER-2 pathways has long been implicated in breast cancer aetiology and drug response, yet no direct connection at a transcriptional level has been shown. Here we show that oestrogen-ER and tamoxifen-ER complexes directly repress ERBB2 transcription by means of a cis-regulatory element within the ERBB2 gene in human cell lines. We implicate the paired box 2 gene product (PAX2), in a previously unrecognized role, as a crucial mediator of ER repression of ERBB2 by the anti-cancer drug tamoxifen. We show that PAX2 and the ER co-activator AIB-1/SRC-3 compete for binding and regulation of ERBB2 transcription, the outcome of which determines tamoxifen response in breast cancer cells. The repression of ERBB2 by ER-PAX2 links these two breast cancer subtypes and suggests that aggressive ERBB2-positive tumours can originate from ER-positive luminal tumours by circumventing this repressive mechanism. These data provide mechanistic insight into the molecular basis of endocrine resistance in breast cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920208/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2920208/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurtado, Antoni -- Holmes, Kelly A -- Geistlinger, Timothy R -- Hutcheson, Iain R -- Nicholson, Robert I -- Brown, Myles -- Jiang, Jie -- Howat, William J -- Ali, Simak -- Carroll, Jason S -- P01CA8011105/CA/NCI NIH HHS/ -- R01 DK074967/DK/NIDDK NIH HHS/ -- R01 DK074967-03/DK/NIDDK NIH HHS/ -- R01DK074967/DK/NIDDK NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2008 Dec 4;456(7222):663-6. doi: 10.1038/nature07483. Epub 2008 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19005469" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/drug therapy/genetics/pathology ; Cell Line ; Cell Line, Tumor ; Chromatin Immunoprecipitation ; Drug Resistance, Neoplasm/genetics ; Estrogens/metabolism ; Gene Expression Regulation, Neoplastic/drug effects ; Gene Silencing ; Genes, erbB-2/*genetics ; Histone Acetyltransferases ; Humans ; Nuclear Receptor Coactivator 3 ; PAX2 Transcription Factor/deficiency/genetics/*metabolism ; Receptor, ErbB-2/*genetics ; Receptors, Estrogen/*metabolism ; Regulatory Sequences, Nucleic Acid/genetics ; Repressor Proteins/metabolism ; Tamoxifen/metabolism/*pharmacology ; Trans-Activators
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-15
    Description: Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-alpha (ERalpha) function and breast cancer prognosis. Here we show that PR is not merely an ERalpha-induced gene target, but is also an ERalpha-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERalpha to direct ERalpha chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERalpha(+) cell line xenografts and primary ERalpha(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERalpha antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERalpha(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERalpha chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650274/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650274/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohammed, Hisham -- Russell, I Alasdair -- Stark, Rory -- Rueda, Oscar M -- Hickey, Theresa E -- Tarulli, Gerard A -- Serandour, Aurelien A -- Birrell, Stephen N -- Bruna, Alejandra -- Saadi, Amel -- Menon, Suraj -- Hadfield, James -- Pugh, Michelle -- Raj, Ganesh V -- Brown, Gordon D -- D'Santos, Clive -- Robinson, Jessica L L -- Silva, Grace -- Launchbury, Rosalind -- Perou, Charles M -- Stingl, John -- Caldas, Carlos -- Tilley, Wayne D -- Carroll, Jason S -- 242664/European Research Council/International -- 5P30CA142543/CA/NCI NIH HHS/ -- A10178/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jul 16;523(7560):313-7. doi: 10.1038/nature14583. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK. ; Dame Roma Mitchell Cancer Research Laboratories and the Adelaide Prostate Cancer Research Centre, School of Medicine, Hanson Institute Building, University of Adelaide, Adelaide, South Australia 5005, Australia. ; Department of Urology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA. ; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB7295, Chapel Hill, North Carolina 27599, USA. ; 1] Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK [2] Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK [3] Cambridge Experimental Cancer Medicine Centre, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/drug therapy/*genetics/*metabolism/pathology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Chromatin/drug effects/genetics/metabolism ; DNA Copy Number Variations/genetics ; Disease Progression ; Estrogen Receptor alpha/antagonists & inhibitors/*metabolism ; Estrogens/metabolism/pharmacology ; Female ; *Gene Expression Regulation, Neoplastic/drug effects ; Humans ; Ligands ; Mice ; Progesterone/metabolism/pharmacology ; Protein Binding/drug effects ; Receptors, Progesterone/genetics/*metabolism ; Transcription, Genetic/drug effects ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohammed, Hisham -- Russell, I Alasdair -- Stark, Rory -- Rueda, Oscar M -- Hickey, Theresa E -- Tarulli, Gerard A -- Serandour, Aurelien A -- Birrell, Stephen N -- Bruna, Alejandra -- Saadi, Amel -- Menon, Suraj -- Hadfield, James -- Pugh, Michelle -- Raj, Ganesh V -- Brown, Gordon D -- D'Santos, Clive -- Robinson, Jessica L L -- Silva, Grace -- Launchbury, Rosalind -- Perou, Charles M -- Stingl, John -- Caldas, Carlos -- Tilley, Wayne D -- Carroll, Jason S -- England -- Nature. 2015 Oct 1;526(7571):144. doi: 10.1038/nature14959. Epub 2015 Aug 5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26245370" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-06
    Description: Oestrogen receptor-alpha (ER) is the defining and driving transcription factor in the majority of breast cancers and its target genes dictate cell growth and endocrine response, yet genomic understanding of ER function has been restricted to model systems. Here we map genome-wide ER-binding events, by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), in primary breast cancers from patients with different clinical outcomes and in distant ER-positive metastases. We find that drug-resistant cancers still recruit ER to the chromatin, but that ER binding is a dynamic process, with the acquisition of unique ER-binding regions in tumours from patients that are likely to relapse. The acquired ER regulatory regions associated with poor clinical outcome observed in primary tumours reveal gene signatures that predict clinical outcome in ER-positive disease exclusively. We find that the differential ER-binding programme observed in tumours from patients with poor outcome is not due to the selection of a rare subpopulation of cells, but is due to the FOXA1-mediated reprogramming of ER binding on a rapid timescale. The parallel redistribution of ER and FOXA1 binding events in drug-resistant cellular contexts is supported by histological co-expression of ER and FOXA1 in metastatic samples. By establishing transcription-factor mapping in primary tumour material, we show that there is plasticity in ER-binding capacity, with distinct combinations of cis-regulatory elements linked with the different clinical outcomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272464/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272464/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ross-Innes, Caryn S -- Stark, Rory -- Teschendorff, Andrew E -- Holmes, Kelly A -- Ali, H Raza -- Dunning, Mark J -- Brown, Gordon D -- Gojis, Ondrej -- Ellis, Ian O -- Green, Andrew R -- Ali, Simak -- Chin, Suet-Feung -- Palmieri, Carlo -- Caldas, Carlos -- Carroll, Jason S -- A10178/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Jan 4;481(7381):389-93. doi: 10.1038/nature10730.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22217937" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breast Neoplasms/*diagnosis/drug therapy/*genetics/pathology ; Cell Line, Tumor ; Drug Resistance, Neoplasm/drug effects/genetics ; Female ; *Gene Expression Regulation, Neoplastic/drug effects ; Hepatocyte Nuclear Factor 3-alpha/metabolism ; Humans ; Neoplasm Metastasis/genetics ; Prognosis ; Protein Binding ; Receptors, Estrogen/*metabolism ; Regulatory Sequences, Nucleic Acid/genetics ; Survival Analysis ; Tamoxifen/pharmacology/therapeutic use ; Treatment Outcome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-07
    Description: Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no targeted therapy. BET bromodomain inhibitors, which have shown efficacy in several models of cancer, have not been evaluated in TNBC. These inhibitors displace BET bromodomain proteins such as BRD4 from chromatin by competing with their acetyl-lysine recognition modules, leading to inhibition of oncogenic transcriptional programs. Here we report the preferential sensitivity of TNBCs to BET bromodomain inhibition in vitro and in vivo, establishing a rationale for clinical investigation and further motivation to understand mechanisms of resistance. In paired cell lines selected for acquired resistance to BET inhibition from previously sensitive TNBCs, we failed to identify gatekeeper mutations, new driver events or drug pump activation. BET-resistant TNBC cells remain dependent on wild-type BRD4, which supports transcription and cell proliferation in a bromodomain-independent manner. Proteomic studies of resistant TNBC identify strong association with MED1 and hyper-phosphorylation of BRD4 attributable to decreased activity of PP2A, identified here as a principal BRD4 serine phosphatase. Together, these studies provide a rationale for BET inhibition in TNBC and present mechanism-based combination strategies to anticipate clinical drug resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shu, Shaokun -- Lin, Charles Y -- He, Housheng Hansen -- Witwicki, Robert M -- Tabassum, Doris P -- Roberts, Justin M -- Janiszewska, Michalina -- Huh, Sung Jin -- Liang, Yi -- Ryan, Jeremy -- Doherty, Ernest -- Mohammed, Hisham -- Guo, Hao -- Stover, Daniel G -- Ekram, Muhammad B -- Peluffo, Guillermo -- Brown, Jonathan -- D'Santos, Clive -- Krop, Ian E -- Dillon, Deborah -- McKeown, Michael -- Ott, Christopher -- Qi, Jun -- Ni, Min -- Rao, Prakash K -- Duarte, Melissa -- Wu, Shwu-Yuan -- Chiang, Cheng-Ming -- Anders, Lars -- Young, Richard A -- Winer, Eric P -- Letai, Antony -- Barry, William T -- Carroll, Jason S -- Long, Henry W -- Brown, Myles -- Liu, X Shirley -- Meyer, Clifford A -- Bradner, James E -- Polyak, Kornelia -- CA080111/CA/NCI NIH HHS/ -- CA103867/CA/NCI NIH HHS/ -- CA120184/CA/NCI NIH HHS/ -- CA168504/CA/NCI NIH HHS/ -- P50 CA168504/CA/NCI NIH HHS/ -- R01 CA103867/CA/NCI NIH HHS/ -- England -- Nature. 2016 Jan 21;529(7586):413-7. doi: 10.1038/nature16508. Epub 2016 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Princess Margaret Cancer Center/University Health Network, Toronto, Ontario M5G1L7, Canada. ; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G2M9, Canada. ; Harvard University, Cambridge, Massachusetts 02138, USA. ; Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK. ; Department of Pathology, Brigham and Women's Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Simmons Comprehensive Cancer Center, Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. ; Broad Institute, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26735014" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-08-08
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2009-03-02
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-07
    Description: Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1–regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ERα binding sites. Analysis of select binding sites confirmed regulation of ERα–regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ERα recruitment, while LRH-1 knockdown reduced ERα recruitment to ERα binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ERα target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ERα at oestrogen response elements controls the expression of oestrogen-responsive genes.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-22
    Description: Estrogen receptor (ER) binds to distal enhancers within the genome and requires additional factors, such as the Forkhead protein FoxA1, for mediating chromatin interactions. We now show that the human Groucho protein, Transducin-like enhancer protein 1 (TLE1), positively assists some ER-chromatin interactions, a role that is distinct from its general role as a transcriptional repressor. We show that specific silencing of TLE1 inhibits the ability of ER to bind to a subset of ER binding sites within the genome, a phenomenon that results in perturbations in phospho-RNA Pol II recruitment. Furthermore, TLE1 is essential for effective ER-mediated cell division. We have discovered a distinct role for TLE1, as a necessary transcriptional component of the ER complex, where it facilitates ER-chromatin interactions.
    Keywords: Breast Cancer Special Feature
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...