ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-09
    Description: The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperature also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-05-05
    Description: Solar gravity modes have been actively sought because they directly probe the solar core (below 0.2 solar radius), but they have not been conclusively detected in the Sun because of their small surface amplitudes. Using data from the Global Oscillation at Low Frequency instrument, we detected a periodic structure in agreement with the period separation predicted by the theory for gravity dipole modes. When studied in relation to simulations including the best physics of the Sun determined through the acoustic modes, such a structure favors a faster rotation rate in the core than in the rest of the radiative zone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, Rafael A -- Turck-Chieze, Sylvaine -- Jimenez-Reyes, Sebastian J -- Ballot, Jerome -- Palle, Pere L -- Eff-Darwich, Antonio -- Mathur, Savita -- Provost, Janine -- New York, N.Y. -- Science. 2007 Jun 15;316(5831):1591-3. Epub 2007 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DSM/DAPNIA/Service d'Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France. rafael.garcia@cea.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478682" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-10-25
    Description: Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Michel, Eric -- Baglin, Annie -- Auvergne, Michel -- Catala, Claude -- Samadi, Reza -- Baudin, Frederic -- Appourchaux, Thierry -- Barban, Caroline -- Weiss, Werner W -- Berthomieu, Gabrielle -- Boumier, Patrick -- Dupret, Marc-Antoine -- Garcia, Rafael A -- Fridlund, Malcolm -- Garrido, Rafael -- Goupil, Marie-Jo -- Kjeldsen, Hans -- Lebreton, Yveline -- Mosser, Benoit -- Grotsch-Noels, Arlette -- Janot-Pacheco, Eduardo -- Provost, Janine -- Roxburgh, Ian W -- Thoul, Anne -- Toutain, Thierry -- Tiphene, Didier -- Turck-Chieze, Sylvaine -- Vauclair, Sylvie D -- Vauclair, Gerard P -- Aerts, Conny -- Alecian, Georges -- Ballot, Jerome -- Charpinet, Stephane -- Hubert, Anne-Marie -- Lignieres, Francois -- Mathias, Philippe -- Monteiro, Mario J P F G -- Neiner, Coralie -- Poretti, Ennio -- de Medeiros, Jose Renan -- Ribas, Ignasi -- Rieutord, Michel L -- Cortes, Teodoro Roca -- Zwintz, Konstanze -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):558-60. doi: 10.1126/science.1163004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Etudes Spatiales et d'Instrumentation Astrophysique (LESIA), Observatoire de Paris, CNRS (UMR 8109)-Universite Paris 6 Pierre et Marie Curie-Universite Paris 7 Denis Diderot, Place Jules Janssen, F-92195 Meudon, France. Eric.Michel@obspm.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948534" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: We tested the influence of near‐future climate change on the growth, health and seafood quality of a recreationally and economically important fish, yellowfin bream (Acanthopagrus australis). Growth significantly increased under near‐future temperature conditions, but there was little change in fish health, tissue biochemistry or nutritional properties of flesh. We contend that widely distributed species that span large geographic areas and habitats can be “climate winners” by being resilient to negative direct impacts of near‐future oceanic and estuarine climate change. Abstract Climate change can affect marine and estuarine fish via alterations to their distributions, abundances, sizes, physiology and ecological interactions, threatening the provision of ecosystem goods and services. While we have an emerging understanding of such ecological impacts to fish, we know little about the potential influence of climate change on the provision of nutritional seafood to sustain human populations. In particular, the quantity, quality and/or taste of seafood may be altered by future environmental changes with implications for the economic viability of fisheries. In an orthogonal mesocosm experiment, we tested the influence of near‐future ocean warming and acidification on the growth, health and seafood quality of a recreationally and commercially important fish, yellowfin bream (Acanthopagrus australis). The growth of yellowfin bream significantly increased under near‐future temperature conditions (but not acidification), with little change in health (blood glucose and haematocrit) or tissue biochemistry and nutritional properties (fatty acids, lipids, macro‐ and micronutrients, moisture, ash and total N). Yellowfin bream appear to be highly resilient to predicted near‐future ocean climate change, which might be facilitated by their wide spatio‐temporal distribution across habitats and broad diet. Moreover, an increase in growth, but little change in tissue quality, suggests that near‐future ocean conditions will benefit fisheries and fishers that target yellowfin bream. The data reiterate the inherent resilience of yellowfin bream as an evolutionary consequence of their euryhaline status in often environmentally challenging habitats and imply their sustainable and viable fisheries into the future. We contend that widely distributed species that span large geographic areas and habitats can be “climate winners” by being resilient to the negative direct impacts of near‐future oceanic and estuarine climate change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-05-31
    Description: Data from the Global Oscillation Network Group (GONG) project and other helioseismic experiments provide a test for models of stellar interiors and for the thermodynamic and radiative properties, on which the models depend, of matter under the extreme conditions found in the sun. Current models are in agreement with the helioseismic inferences, which suggests, for example, that the disagreement between the predicted and observed fluxes of neutrinos from the sun is not caused by errors in the models. However, the GONG data reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone. These discrepancies indicate effects that have so far not been correctly accounted for; for example, it is plausible that the sound-speed differences reflect weak mixing in stellar interiors, of potential importance to the overall evolution of stars and ultimately to estimates of the age of the galaxy based on stellar evolution calculations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christensen-Dalsgaard -- Dappen -- Ajukov -- Anderson -- Antia -- Basu -- Baturin -- Berthomieu -- Chaboyer -- Chitre -- Cox -- Demarque -- Donatowicz -- Dziembowski -- Gabriel -- Gough -- Guenther -- Guzik -- Harvey -- Hill -- Houdek -- Iglesias -- Kosovichev -- Leibacher -- Morel -- Proffitt -- Provost -- Reiter -- Rhodes Jr -- Rogers -- Roxburgh -- Thompson -- Ulrich -- New York, N.Y. -- Science. 1996 May 31;272(5266):1286-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Christensen-Dalsgaard and S. Basu are with Theoretical Astrophysics Center and Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark. W. Dappen and E. J. Rhodes Jr. are with the Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA. S. V. Ajukov is with the Sternberg Astronomical Institute, Moscow, Russia. E. R. Anderson, J. W. Harvey, F. Hill, and J. W. Leibacher are with the National Solar Observatory, National Optical Astronomy Observatories, Tucson, AZ 85726, USA. H. M. Antia and S. M. Chitre are with the Tata Institute of Fundamental Research, Bombay, India. V. A. Baturin, I. W. Roxburgh, and M. J. Thompson are with the Astronomy Unit, Queen Mary and Westfield College, London E1 4NS, UK. G. Berthomieu, P. Morel, and J. Provost are with the Observatoire de la Cote d'Azur, Nice, France. B. Chaboyer is with CITA, University of Toronto, Toronto, Canada. A. N. Cox and J. A. Guzik are with Los Alamos National Laboratory, Los Alamos, NM 87545, USA. P. Demarque is with the Department of Astronomy, Yale University, New Haven, CT 06520, USA. J. Donatowicz and G. Houdek are with the Institut fur Astronomie, Universitat Wien, Vienna, Austria. W. A. Dziembowski is with the Copernicus Center, Warsaw, Poland. M. Gabriel is with the Institut d'Astrophysique, Universite de Liege, Liege, Belgium. D. O. Gough is with the Institute of Astronomy, University of Cambridge, Cambridge, UK. D. B. Guenther is with the Department of Astronomy and Physics, Saint Mary's University, Halifax, Nova Scotia, Canada. C. A. Iglesias and F. J. Rogers are with the Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. A. G. Kosovichev is with Center for Space Science and Astrophysics, Stanford University, Stanford, CA 94305, USA. C. R. Proffitt is with Computer Sciences Corporation, Goddard Space Flight Center, Greenbelt, MD 20771, USA. J. Reiter is with the Mathematisches Institut, Technische Universitat Munchen, Munich, Germany. R. K. Ulrich is with the Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662456" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-05-31
    Description: Splitting of the sun's global oscillation frequencies by large-scale flows can be used to investigate how rotation varies with radius and latitude within the solar interior. The nearly uninterrupted observations by the Global Oscillation Network Group (GONG) yield oscillation power spectra with high duty cycles and high signal-to-noise ratios. Frequency splittings derived from GONG observations confirm that the variation of rotation rate with latitude seen at the surface carries through much of the convection zone, at the base of which is an adjustment layer leading to latitudinally independent rotation at greater depths. A distinctive shear layer just below the surface is discernible at low to mid-latitudes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson -- Toomre -- Anderson -- Antia -- Berthomieu -- Burtonclay -- Chitre -- Christensen-Dalsgaard -- Corbard -- DeRosa -- Genovese -- Gough -- Haber -- Harvey -- Hill -- Howe -- Korzennik -- Kosovichev -- Leibacher -- Pijpers -- Provost -- Rhodes Jr -- Schou -- Sekii -- Stark -- Wilson -- New York, N.Y. -- Science. 1996 May 31;272(5266):1300-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉M. J. Thompson and R. Howe are in the Astronomy Unit, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, UK. J. Toomre, M. DeRosa, and D. A. Haber are at the Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, CO 80309-0440, USA. E. R. Anderson, J. W. Harvey, F. Hill, and J. W. Leibacher are at the National Solar Observatory (NSO), National Optical Astronomy Observatories (NOAO), Post Office Box 26732, Tucson, AZ 85726-6732, USA. H. M. Antia and S. M. Chitre are at the Tata Institute of Fundamental Research, Bombay 400005, India. G. Berthomieu, T. Corbard, and J. Provost are at the Observatoire de la Cote d'Azur, 06304 Nice Cedex 4, France. D. Burtonclay and P. R. Wilson are in the School of Mathematics, University of Sydney, Sydney, NSW 2006, Australia. J. Christensen-Dalsgaard and F. P. Pijpers are at the Theoretical Astrophysics Center, Aarhus University, DK-8000 Aarhus C, Denmark. C. R. Genovese is in the Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA. D. O. Gough and T. Sekii are in the Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK. S. G. Korzennik is at the Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA. A. G. Kosovichev and J. Schou are at Hansen Experimental Physics Laboratory Annex, Stanford University, Stanford, CA 94305-4085, USA. E. J. Rhodes Jr. is in the Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA. P. B. Stark is in the Department of Statistics, University of California, Berkeley, CA 94720-3860, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662459" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 5 (1993), S. 1143-1149 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of natural products 48 (1985), S. 1000-1001 
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of natural products 49 (1986), S. 178-179 
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of natural products 49 (1986), S. 367-367 
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...