ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: seismicity ; geodynamics ; seismology
    Description / Table of Contents: This volume contains twenty-five research papers on seismicity patterns, their interpretation and their possible relevance to learning how to predict earthquakes. The interpretation of seismicity patterns has become somewhat controversial. Some researchers present case histories suggesting that earthquakes may be predicted by increased seismic moment release or seismic quiescence and, in general, by understanding the processes of self-organized criticality. Others deny these hypotheses. Although the problem of recognizing foreshocks in real time remains unsolved, new properties of microearthquakes as a function of time are coming to light. Computer modeling of seismicity also is advancing in sophistication and relevance. Surprisingly, b-values seem to hold substantial information about varying local conditions of earthquake generation.
    Pages: Online-Ressource (524 Seiten)
    ISBN: 9783764362096
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  National Institute for Environmental Studies, Tsukuba, Japan
    Publication Date: 2023-01-13
    Description: We developed a comprehensive dataset of major soil clay minerals covering the global land surface for both topsoil (near-surface) and subsoil at different spatial resolutions. This dataset is intended for application in a variety of earth science fields that require interdisciplinary data. We gathered observational data on clay minerals through a literature survey and meta-analysis. Most observations were originally obtained by x-ray diffraction (XRD) analysis. The multitude of clay minerals that occur in soils were classified into ten groups: chlorite, gibbsite, kaolinite, mica-illite, smectite, quartz, vermiculite, non-crystalline (amorphous and short-range order minerals), iron oxide, and others. We then aggregated the clay mineral composition data on the basis of 12 soil orders. Using a global map of soil orders and additional soil datasets, we developed global maps of clay mineral abundances in topsoil and subsoil at a resolution of 2° grid cells (about 3.7 km) and, by averaging, at lower spatial resolutions (e.g., 1° grid cells). We examined uncertainties in the dataset by statistical (i.e., Monte Carlo) methods and by comparison with previous datasets. The new dataset will facilitate continental-scale studies of biogeochemistry and climatology by providing more precise soil properties related to, for example, soil adsorption and dust emission. The dataset should also find application in interdisciplinary studies in fields such as hydrology and agronomy, both as input data for model simulations and for the interpretation of observational data.
    Type: Dataset
    Format: application/zip, 392.1 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji (2017): Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer. Earth System Science Data, 9(1), 149-162, https://doi.org/10.5194/essd-9-149-2017
    Publication Date: 2023-05-12
    Description: This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH+4 (and NONO-3) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH+4 and/or NO-3-forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH+4/NO-3 ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010, doi:10.1175/2009EI288.1) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 Tg-N to 110 Tg-N during 1961-2010. On the other hand, the global NO-3 input started to decline after the late 1980s and the fraction of NO-3 in global N fertilizer decreased consistently from 35 % to 13 % over a 50-year period. NH+4 based fertilizers are dominant in most countries; however, the NH+4/NO-3 ratio in N fertilizer inputs shows clear differences temporally and geographically. This new map can be utilized as an input data to global model studies and bring new insights for the assessment of historical terrestrial N cycling changes.
    Type: Dataset
    Format: application/zip, 32.5 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-17
    Description: Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottomup estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 TgCH4 yr􀀀1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 TgCH4 yr􀀀1 or 60% is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 TgCH4 yr􀀀1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 TgCH4 yr􀀀1 larger than our estimate for the previous decade (2000–2009), and 24 TgCH4 yr􀀀1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30% larger global emissions (737 TgCH4 yr􀀀1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions ( 65% of the global budget, 〈30 N) compared to mid-latitudes ( 30 %, 30–60 N) and high northern latitudes ( 4 %, 60–90 N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 TgCH4 yr􀀀1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 TgCH4 yr􀀀1 by 8 TgCH4 yr􀀀1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5% compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.
    Description: Published
    Description: 1561–1623
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-29
    Description: The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular ( biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 TgCH4 yr􀀀1, range 540–568. About 60% of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 TgCH4 yr􀀀1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions ( 64% of the global budget, 〈 30 N) as compared to mid ( 32 %, 30–60 N) and high northern latitudes ( 4 %, 60–90 N). Top-down inversions consistently infer lower emissions in China ( 58 TgCH4 yr􀀀1, range 51–72, 􀀀14 %) and higher emissions in Africa (86 TgCH4 yr􀀀1, range 73–108, C19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40% on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.
    Description: Published
    Description: 697–751
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-16
    Description: Following the recent Global Carbon Project (GCP) synthesis of the decadal methane (CH4/ budget over 2000– 2012 (Saunois et al., 2016), we analyse here the same dataset with a focus on quasi-decadal and inter-annual variability in CH4 emissions. The GCP dataset integrates results from topdown studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models (including process-based models for estimating land surface emissions and atmospheric chemistry), inventories of anthropogenic emissions, and data-driven approaches.The annual global methane emissions from top-down studies, which by construction match the observed methane growth rate within their uncertainties, all show an increase in total methane emissions over the period 2000–2012, but this increase is not linear over the 13 years. Despite differences between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total methane emissions over the period 2000–2006, during the plateau of atmospheric methane mole fractions, and also over the period 2008–2012, during the renewed atmospheric methane increase. However, the top-down ensemble mean produces an emission shift between 2006 and 2008, leading to 22 [16–32] Tg CH4 yr􀀀1 higher methane emissions over the period 2008–2012 compared to 2002–2006. This emission increase mostly originated from the tropics, with a smaller contribution from mid-latitudes and no significant change from boreal regions. The regional contributions remain uncertain in top-down studies. Tropical South America and South and East Asia seem to contribute the most to the emission increase in the tropics. However, these two regions have only limited atmospheric measurements and remain therefore poorly constrained. The sectorial partitioning of this emission increase between the periods 2002–2006 and 2008–2012 differs from one atmospheric inversion study to another. However, all topdown studies suggest smaller changes in fossil fuel emissions (from oil, gas, and coal industries) compared to the mean of the bottom-up inventories included in this study. This difference is partly driven by a smaller emission change in China from the top-down studies compared to the estimate in the Emission Database for Global Atmospheric Research (EDGARv4.2) inventory, which should be revised to smaller values in a near future. We apply isotopic signatures to the emission changes estimated for individual studies based on five emission sectors and find that for six individual top-down studies (out of eight) the average isotopic signature of the emission changes is not consistent with the observed change in atmospheric 13CH4. However, the partitioning in emission change derived from the ensemble mean is consistent with this isotopic constraint. At the global scale, the top-down ensemble mean suggests that the dominant contribution to the resumed atmospheric CH4 growth after 2006 comes from microbial sources (more from agriculture and waste sectors than from natural wetlands), with an uncertain but smaller contribution from fossil CH4 emissions. In addition, a decrease in biomass burning emissions (in agreement with the biomass burning emission databases) makes the balance of sources consistent with atmospheric 13CH4 observations. In most of the top-down studies included here, OH concentrations are considered constant over the years (seasonal variations but without any inter-annual variability). As a result, the methane loss (in particular through OH oxidation) varies mainly through the change in methane concentrations and not its oxidants. For these reasons, changes in the methane loss could not be properly investigated in this study, although it may play a significant role in the recent atmospheric methane changes as briefly discussed at the end of the paper.
    Description: Published
    Description: 11135–11161
    Description: 6A. Geochimica per l'ambiente
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 85 (1963), S. 2976-2983 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 85 (1963), S. 2988-2991 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 85 (1963), S. 2983-2988 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 336-338 (Apr. 2007), p. 730-734 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: BaRuO3(BRO) and BaIrO3(BIO) thin films were prepared by laser ablation, and the effects ofpreparation conditions on the structure, morphology and electrical conductivity were investigated. BROthin films deposited at oxygen partial pressure (PO2) = 13 Pa and substrate temperature (Tsub) 〈 573 Kwere amorphous. At Tsub = 573 K, the rhombohedral BRO thin films with (110) orientation were obtained.BRO thin films prepared at Tsub = 773 K and PO2= 13 Pa exhibited the resistivity of 5x10-6 [removed info]m andshowed metallic conduction. BIO thin films deposited at PO2= 40 Pa and Tsub 〈 623 K were amorphous.Tsub 〉 623 K, the BIO thin films crystallized into a 6H structure were obtained. The resistivity of the BIOfilms at PO2= 40 Pa decreased from 1.4x10-2 to 4x10-4 [removed info]m with decreasing Tsub from 1073 to 573 K
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...