ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 1999-08-01
    Print ISSN: 0018-067X
    Electronic ISSN: 1365-2540
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-13
    Description: For many coastal areas including the Baltic Sea, ambitious nutrient abatement goals have been set to curb eutrophication, but benefits of such measures were normally not studied in light of anticipated climate change. To project the likely responses of nutrient abatement on eelgrass (Zostera marina), we coupled a species distribution model with a biogeochemical model, obtaining future water turbidity, and a wave model for predicting the future hydrodynamics in the coastal area. Using this, eelgrass distribution was modeled for different combinations of nutrient scenarios and future wind fields. We are the first to demonstrate that while under a business as usual scenario overall eelgrass area will not recover, nutrient reductions that fulfill the Helsinki Commission’s Baltic Sea Action Plan (BSAP) are likely to lead to a substantial areal expansion of eelgrass coverage, primarily at the current distribution’s lower depth limits, thereby overcompensating losses in shallow areas caused by a stormier climate.
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of Royal Swedish Academy of Sciences.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-30
    Description: In the northern hemisphere, eelgrass Zostera marina L. is the most important and widespread seagrass species. Despite its ecological importance, baseline data on eelgrass distribution and abundance are mostly absent, particularly in subtidal areas with relatively turbid waters. Here, we report a combined approach of vegetation mapping in the Baltic Sea coupled to a species distribution model (SDM). Eelgrass cover was mapped continuously in the summers of 2010 and 2011 with an underwater towed camera along ~400 km of seafloor. Eelgrass populated 80% of the study region and occurred at water depths between 0.6 and 7.6 m at sheltered to moderately exposed coasts. Mean patch length was 128.6 m but was higher at sheltered locations, with a maximum of 〉2000 m. The video observations (n = 7824) were used as empiric input to the SDMs. Using generalized additive models, 3 predictor variables (depth, wave exposure, and slope), which were selected based on Akaike’s information criterion, were sufficient to predict eelgrass presence/absence. Along with a very good overall discriminative ability (area under the receiver-operating characteristic curve ROC/AUC = 0.82), depth (as a proxy for light), wave exposure, and slope contributed 66, 29, and 5%, respectively, to the final model. The estimated total areal extent of eelgrass in the study region amounts to 140.5 km2 and comprises about 11.5% of all known Baltic seagrass beds. The present work is, to the best of our knowledge, the largest study undertaken to date on vegetation mapping and the first to assess distribution of eelgrass quantitatively in the western Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Seagrass meadows have a disproportionally high organic carbon (Corg) storage potential within their sediments and thus can play a role in climate change mitigation via their conservation and restoration. However, high spatial heterogeneity is observed in Corg, with wide differences seen globally, regionally, and even locally (within a seagrass meadow). Consequently, it is difficult to determine their contributions to the national remaining carbon dioxide (CO2) budget without introducing a large degree of uncertainty. To address this spatial heterogeneity, we sampled 20 locations across the German Baltic Sea to quantify Corg stocks and sources in Zostera marina seagrass-vegetated and adjacent unvegetated sediments. To predict and integrate the Corg inventory in space, we measured the physical (seawater depth, sediment grain size, current velocity at the seafloor, anthropogenic inputs) and biological (seagrass complexity) environments to determine regional and local drivers of Corg variation. Here, we show that seagrass meadows in Germany constitute a significant Corg stock, storing on average 7,785 g C/m2, 13 times greater than meadows from other parts of the Baltic Sea, and fourfold richer than adjacent unvegetated sediments. Stocks were highly heterogenous; they differed widely between (by 10-fold) and even within (by 3- to 55-fold) sites. Regionally, Corg was controlled by seagrass complexity, fine sediment fraction, and seawater depth. Autochthonous material contributed to 78% of the total Corg in seagrass-vegetated sediments, and the remaining 22% originated from allochthonous sources (phytoplankton and macroalgae). However, relic terrestrial peatland material, deposited approximately 6,000 years BP during the last deglaciation, was an unexpected and significant source of Corg. Collectively, German seagrasses in the Baltic Sea are preventing 8.14 Mt of future CO2 emissions. Because Corg is mostly produced on-site and not imported from outside the meadow boundaries, the richness of this pool may be contingent on seagrass habitat health. Disturbance of this Corg stock could act as a source of CO2 emissions. However, the high spatial heterogeneity warrants site-specific investigations to obtain accurate estimates of blue carbon and a need to consider millennial timescale deposits of Corg beneath seagrass meadows in Germany and potentially other parts of the southwestern Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: For many coastal areas including the Baltic Sea, ambitious nutrient abatement goals have been set to curb eutrophication, but benefits of such measures were normally not studied in light of anticipated climate change. To project the likely responses of nutrient abatement on eelgrass (Zostera marina), we coupled a species distribution model with a biogeochemical model, obtaining future water turbidity, and a wave model for predicting the future hydrodynamics in the coastal area. Using this, eelgrass distribution was modeled for different combinations of nutrient scenarios and future wind fields. We are the first to demonstrate that while under a business as usual scenario overall eelgrass area will not recover, nutrient reductions that fulfill the Helsinki Commission’s Baltic Sea Action Plan (BSAP) are likely to lead to a substantial areal expansion of eelgrass coverage, primarily at the current distribution’s lower depth limits, thereby overcompensating losses in shallow areas caused by a stormier climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...