ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-31
    Description: Nature Geoscience 7, 792 (2014). doi:10.1038/ngeo2257 Authors: M. Reuter, M. Buchwitz, A. Hilboll, A. Richter, O. Schneising, M. Hilker, J. Heymann, H. Bovensmann & J. P. Burrows At present, global CO2 emission inventories are mainly based on bottom-up estimates that rely, for example, on reported fossil fuel consumptions and fuel types. The associated uncertainties propagate into the CO2-to-NOx emission ratios that are used in pollution prediction and monitoring, as well as into biospheric carbon fluxes derived by inverse models. Here we analyse simultaneous and co-located satellite retrievals from SCIAMACHY (ref. ; SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) of the column-average dry-air mole fraction of CO2 (refs , ) and NO2 (refs , , ) for the years 2003–2011 to provide a top-down estimate of trends in emissions and in the ratio between CO2 and NOx emissions. Our analysis shows that the CO2-to-NOx emission ratio has increased by 4.2 ± 1.7% yr−1 in East Asia. In this region, we find a large positive trend of CO2 emissions (9.8 ± 1.7% yr−1), which we largely attribute to the growing Chinese economy. This trend exceeds the positive trend of NOx emissions (5.8 ± 0.9% yr−1). Our findings suggest that the recently installed and renewed technology in East Asia, such as power plants, transportation and so on, is cleaner in terms of NOx emissions than the old infrastructure, and roughly matches relative emission levels in North America and Europe.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-27
    Description: The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions, closely followed by the effect of reduced dry deposition caused by closing of the plants' stomata at very high temperatures. The impact of high temperatures on the ozone chemistry was much lower. The results suggest that forest fire emissions, and the temperature effect on biogenic emissions and dry deposition, will potentially lead to substantial ozone increases in a warmer climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-08
    Description: Hazardous impact of air pollutant emissions from megacities on atmospheric composition on regional and global scales is currently an important issue in atmospheric research. However, the quantification of emissions and related effects is frequently a difficult task, especially in the case of developing countries, due to the lack of reliable data and information. This study examines possibilities to retrieve multi-annual NOx emissions changes in megacity regions from satellite measurements of nitrogen dioxide and to quantify them in terms of linear and nonlinear trends. By combining the retrievals of the GOME and SCIAMACHY satellite instrument data with simulations performed by the CHIMERE chemistry transport model, we obtain the time series of NOx emission estimates for the 12 largest urban agglomerations in Europe and the Middle East in the period from 1996 to 2008. We employ then a novel method allowing estimation of a nonlinear trend in a noisy time series of an observed variable. The method is based on the probabilistic approach and the use of artificial neural networks; it does not involve any quantitative a priori assumptions. As a result, statistically significant nonlinearities in the estimated NOx emission trends are detected in 5 megacities (Bagdad, Madrid, Milan, Moscow and Paris). Statistically significant upward linear trends are detected in Istanbul and Tehran, while downward linear trends are revealed in Berlin, London and the Ruhr agglomeration. The presence of nonlinearities in NOx emission changes in Milan, Paris and Madrid is confirmed by comparison of simulated NOx concentrations with independent air quality monitoring data. A good quantitative agreement between the linear trends in the simulated and measured near surface NOx concentrations is found in London.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-16
    Description: Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI-2005), in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2) columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50%–70% higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60% higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly reactive VOC emissions from the point sources in Houston improve the model's capability of simulating ozone (O3) plumes observed by the NOAA WP-3D aircraft, although the deficiencies in the model O3 simulations indicate that many challenges remain for a full understanding of the O3 formation mechanisms in Houston.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-18
    Description: Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term dataset of tropospheric pollution. However, the observations differ in spatial resolution, local time of measurement, viewing geometry, and other details. All these factors can severely impact the retrieved NO2 columns. In this study, we present three ways to account for instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving the individual instruments' spatial resolutions. For combining measurements from GOME and SCIAMACHY into one consistent time series, we develop a method to explicitly account for the instruments' difference in ground pixel size (40 × 320 km2 vs. 30 × 60 km2). This is especially important when analysing NO2 changes over small, localised sources like, e.g. megacities. The method is based on spatial averaging of the measured earthshine spectra and extraction of a spatial pattern of the resolution effect. Furthermore, two empirical corrections, which summarise all instrumental differences by including instrument-dependent offsets in a fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series, and to an extended dataset comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution. Compared to previous studies, the longer study period leads to significantly reduced uncertainties. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over east-central China tripling from 1996 to 2011. All parts of the developed world, including Western Europe, the United States, and Japan, show significantly decreasing NO2 amounts in the same time period. On a megacity level, individual trends can be as large as +27.2 ± 3.9% yr−1 and +20.7 ± 1.9% yr−1 in Dhaka and Baghdad, respectively, while Los Angeles shows a very strong decrease of −6.00 ± 0.72% yr−1. Most megacities in China, India, and the Middle East show increasing NO2 columns of +5 to 10% yr−1, leading to a doubling to tripling within the study period.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-11
    Description: Tropospheric NO2, a key pollutant in particular in cities, has been measured from space since the mid-1990s by the GOME, SCIAMACHY, OMI, and GOME-2 instruments. These data provide a unique global long-term data set of tropospheric pollution. However, the measurements differ in spatial resolution, local time of measurement, and measurement geometry. All these factors can severely impact the retrieved NO2 columns, which is why they need to be taken into account when analysing time series spanning more than one instrument. In this study, we present several ways to explicitly account for the instrumental differences in trend analyses of the NO2 columns derived from satellite measurements, while preserving their high spatial resolution. Both a physical method, based on spatial averaging of the measured earthshine spectra and extraction of a resolution pattern, and statistical methods, including instrument-dependent offsets in the fitted trend function, are developed. These methods are applied to data from GOME and SCIAMACHY separately, to the combined time series and to an extended data set comprising also GOME-2 and OMI measurements. All approaches show consistent trends of tropospheric NO2 for a selection of areas on both regional and city scales, for the first time allowing consistent trend analysis of the full time series at high spatial resolution and significantly reducing the uncertainties of the retrieved trend estimates compared to previous studies. We show that measured tropospheric NO2 columns have been strongly increasing over China, the Middle East, and India, with values over East Central China triplicating from 1996 to 2011. All parts of the developed world, including Western Europe, the United States, and Japan, show significantly decreasing NO2 amounts in the same time period. On a megacity level, individual trends can be as large as +27 ± 3.7% yr−1 and +20 ± 1.9% yr−1 in Dhaka and Baghdad, respectively, while Los Angeles shows a very strong decrease of −6.0 ± 0.37% yr−1. Most megacities in China, India, and the Middle East show increasing NO2 columns of +5–10% yr−1, leading to a doubling to triplication within the observed period. While linear trends derived with the different methods are consistent, comparison of the GOME and SCIAMACHY time series as well as inspection of time series over individual areas shows clear indication of non-linear changes in NO2 columns in response to rapid changes in technology used and the economical situation.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-07-27
    Description: Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting – Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI-2005), in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2) columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50 %–70 % higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60 % higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly reactive VOC emissions from the point sources in Houston improve the model's capability of simulating ozone (O3) plumes observed by the NOAA WP-3D aircraft, although the deficiencies in the model O3 simulations indicate that many challenges remain for a full understanding of the O3 formation mechanisms in Houston.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-28
    Description: At present, global CO2 emission inventories are mainly based on bottom-up estimates that rely, for example, on reported fossil fuel consumptions and fuel types1,2. The associated uncertainties propagate into the CO2-to-NOx emission ratios that are used in pollution prediction and monitoring3, as well as into biospheric carbon fluxes derived by inverse models4. Here we analyse simultaneous and co-located satellite retrievals from SCIAMACHY (ref. 5; SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) of the column-average dry-air mole fraction of CO2 (refs 6,7) and NO2 (refs 8-10) for the years 2003-2011 to provide a top-down estimate of trends in emissions and in the ratio between CO2 and NOx emissions. Our analysis shows that the CO2-to-NOcx emission ratio has increased by 4.2 ± 1.7%yr-1 in East Asia. In this region, we find a large positive trend of CO2 emissions (9.8 ± 1.7%yr-1), which we largely attribute to the growing Chinese economy. This trend exceeds the positive trend of NOx emissions (5.8±0.9%yr-1). Our findings suggest that the recently installed and renewed technology in East Asia, such as power plants, transportation and so on, is cleaner in terms of NOx emissions than the old infrastructure, and roughly matches relative emission levels in North America and Europe. © 2014 Macmillan Publishers Limited. All rights reserved.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-09
    Description: Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about −40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...