ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Physical geography. ; Atmospheric science. ; Earth System Sciences. ; Atmospheric Science.
    Description / Table of Contents: Preface -- Chapter 1. Scientific Background (J. Jones) -- Chapter 2. General Background (J. Jones, G. Guerova, J. Douša, G. Dick, S. de Haan, E. Pottiaux, O. Bock, R. Pacione and H. Vedel) -- Chapter 3. Advanced GNSS Processing Techniques (Working Group 1) (Y. Altiner, F. Alshawaf, J. Bosy, H. Brenot, E. Brockmann, R. Brožková, Z. Deng, G. Dick, W. Ding, J. Douša, K. Eben, M. Eliaš, R. Fernandes, Ganas, Geiger, G. Guerova, T. Hadaś, Hill, P. Hordyniec, F. Hurter, J. Jones, M. Kačmařík, K. Kaźmierski, J. Kaplon, P. Krč, Landskron, X. Li, Lu, J.P. Martins, G. Möller, L. Morel, G. Ófeigsson, R. Pacione, Pikridas, Pottiaux, J. Resler, W. Rohm, Sá, J. Sammer, T. Simeonov, W. Söhne, Stoycheva, Stürze, R. Szabolcs, N. Teferle, S. Thorsteinsson, P. Václavovic, H. Valentim, van Schaeybroeck, P. Viterbo, K. Wilgan, L. Yang, L. Zhao, N. Zinas and Zus) -- Chapter 4. Use of GNSS Tropospheric Products for High-Resolution, Rapid-Update NWP and Severe Weather Forecasting (Working Group 2) (J. S. Arriola, M. Bender, J. Berckmans, H. Brenot, C. Bruyninx, L. De Cruz, S. de Haan, G. Dick, N. Dymarska, K. Eben, G. Guerova, J. Jones, P. Krč, M. Lindskog, M. Mile, G. Möller, N. Penov, E. Pottiaux, J. Resler, W. Rohm, M. Slavchev, K. Stoev, Stoycheva, E. Trzcina and F. Zus) -- Chapter 5. Use of GNSS Tropospheric Products for Climate Monitoring (Working Group 3) (F. Ahmed, Araszkiewicz, Z. Bałdysz, K. Balidakis, Barroso, S. Bastin, S. Beirle, J. Berckmans, O. Bock, J. Böhm, J. Bogusz, M. Bos, E. Brockmann, M. Cadeddu, Chimani, J. Douša, G. Elgered, M. Eliaš, R. Fernandes, M. Figurski, E Fionda, M. Gruszczynska, G. Guerova, J. Guijarro, Hackman, R. Heinkelmann, J. Jones, S. Zengin Kazancı, Klos, Landskron, J.P. Martins, V. Mattioli, Mircheva, S. Nahmani, R T. Nilsson, T. Ning, Nykiel, R. Pacione, Parracho, E. Pottiaux, Ramos, P. Rebischung, Sá, Schuh, Stankunavicius, K. Stępniak, Valentim, R. Van Malderen, P. Viterbo, P. Willis and Xaver) -- Chapter 6. National Status Reports (Guergana Guerova) -- Chapter 7. STSM Reports (Guergana Guerova) -- Appendix.
    Abstract: The book (COST Action Final report) summarises the proceedings from COST Action ES1206. COST Action ES1206, Advanced GNSS Tropospheric Products for Severe Weather Events and Climate (GNSS4SWEC), was a 4-year project, running from 2013 to 2017, which coordinated new and improved capabilities from concurrent developments in GNSS, meteorological and climate communities. For the first time, the synergy of multi-GNSS constellations was used to develop new, more advanced tropospheric products, exploiting the full potential of multi-GNSS on a wide range of temporal and spatial scales - from real-time products monitoring and forecasting severe weather, to the highest quality post-processed products suitable for climate research. The Action also promoted the use of meteorological data as an input to real-time GNSS positioning, navigation, and timing services and has stimulated knowledge and data transfer throughout Europe and beyond. .
    Type of Medium: Online Resource
    Pages: XXI, 563 p. 290 illus., 270 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030139018
    DDC: 550
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-06
    Description: Nowcasting of severe weather events and summer storms, in particular, are intensively studied as they have great potential for large economic and societal losses. Use of Global Navigation Satellite Systems (GNSS) observations for weather nowcasting has been investigated in various regions. However, combining the vertically integrated water vapour (IWV) with vertical profiles of wet refractivity derived from GNSS tomography has not been exploited for short-range forecasts of storms. In this study, we introduce a methodology to use the synergy of IWV and tomography-based vertical profiles to predict 0–2 h of storms using a machine learning approach for Poland. Moreover, we present an analysis of the importance of features that take part in the prediction process. The accuracy of the model reached over 87%, and the precision of prediction was about 30%. The results show that wet refractivity below 6 km and IWV on the west of the storm are among the significant parameters with potential for predicting storm location. The analysis of IWV demonstrated a correlation between IWV changes and storm occurrence.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-09
    Description: Impact on the hydrology cycle is projected to be one of the most noticeable consequences of climate change. An increase in regional dry and wet extremes has already been observed, resulting in large socioeconomic losses. The 2014 wet conditions in Bulgaria present a valuable case study for analyzing the interaction between multiple drivers that are essential for early forecasting and warning of flood events. In this paper, time series analysis of temperature, precipitation and Terrestrial Water Storage Anomaly (TWSA) is performed and cross-correlations between observations and climate variability indices are computed for a 12-year period. In Bulgaria, a positive linear temperature trend was found with precipitation and TWSA exhibiting negative trends for the period 2003–2014. The year 2014 started with a drier and warmer than usual winter followed by five consecutive wet months from March to July. We found the following long-term variations: (1) temperature showing a local minimum in November 2014, (2) precipitation peaks in July 2014 and (3) a local TWSA maximum in December 2014. Over a 12-year period, weak to moderate negative correlations were observed between the long-term components of temperature, precipitation and TWSA. Moderate positive correlations with a 3 to 6-month lag were obtained between precipitation and TWSA long-term components. The long-term trends of temperature and precipitation from surface observations and atmospheric reanalysis showed very good alignment. Very large subseasonal precipitation residuals from observations and atmospheric reanalysis were obtained for April and September 2014. Two oscillation indices showed: (1) weak correlations with precipitation and (2) weak to moderate correlations with TWSA.
    Electronic ISSN: 2306-5338
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-12
    Description: Bulgaria is a country with a high frequency of hail and thunderstorms from May to September. For the May–September 2010–2015 period, statistical regression analysis was applied to identify predictors/classification functions that contribute skills to thunderstorm forecasting in the Sofia plain. The functions are based on (1) instability indices computed from radiosonde data from Sofia station F1, and (2) combination of instability indices and Integrated Water Vapor (IWV), derived from the Global Navigation Satellite System (GNSS) station Sofia-Plana, F2. Analysis of the probability of detection and the false alarm ratio scores showed the superiority of the F2 classification function, with the best performance in May, followed by June and September. F1 and F2 scores were computed for independent data samples in the period 2017–2018 and confirmed the findings for the 2010–2015 period. Analysis of IWV and lightning flash rates for a multicell and supercell thunderstorm in June and July 2014 showed that the monthly IWV thresholds are reached 14.5 and 3.5 hours before the thunderstorm, respectively. The supercell IWV peak registered 40 min before the thunderstorm, followed by a local IWV minimum corresponding to a peak in the flash rate. In both cases, an increase of IWV during severe hail was registered, which is likely related to the hydrometeor contribution to GNSS path delay. The results of this study will be integrated into the Bulgarian Integrated NowCAsting tool for thunderstorm forecasting in the warm/convective season.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-01
    Print ISSN: 0196-2892
    Electronic ISSN: 1558-0644
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-08
    Description: Global navigation satellite systems (GNSSs) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP) models as well as very short weather prediction (nowcasting) case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-15
    Description: Global Navigation Satellite Systems (GNSS) meteorology is an established operational service providing hourly updated GNSS tropospheric products to the National Meteorologic Services (NMS) in Europe. In the last decade through the ground-based GNSS network densification and new processing strategies like Precise Point Positioning (PPP) it has become possible to obtain sub-hourly tropospheric products for monitoring severe weather events. In this work one year (January–December 2013) of sub-hourly GNSS tropospheric products (Zenith Total Delay) are computed using the PPP strategy for seven stations in Bulgaria. In order to take advantage of the sub-hourly GNSS data to derive Integrated Water Vapour (IWV) surface pressure and temperature with similar temporal resolution is required. As the surface observations are on 3 hourly basis the first step is to compare the surface pressure and temperature from numerical weather prediction model Weather Forecasting and Research (WRF) with observations at three synoptic stations in Bulgaria. The mean difference between the two data-sets for 1) surface pressure is less than 0.5 hPa and the correlation is over 0.989, 2) temperature the largest mean difference is 1.1 °C and the correlation coefficient is over 0.957 and 3) IWV mean difference is in range 0.1–1.1 mm. The evaluation of WRF on annual bases shows IWV underestimation between 0.5 and 1.5 mm at five stations and overestimation at Varna and Rozhen. Varna and Rozhen have also much smaller correlation 0.9 and 0.76. The study of the monthly IWV variation shows that at those locations the GNSS IWV has unexpected drop in April and March respectively. The reason for this drop is likely problems with station raw data. At the remaining 5 stations a very good agreement between GNSS and WRF is observed with high correlation during the cold part of 2013 i.e. March, October and December (0.95) and low correlation during the warm part of 2013 i.e. April to August (below 0.9). The diurnal cycle of the WRF model shows a dry bias in the range of 0.5-1.5 mm. Between 00 and 01 UTC the GNSS IWV tends to be underestimate IWV which is likely due to the processing window used. The precipitation efficiency from GNSS and WRF show very good agreement on monthly bases with a maximum in May-June and minimum in August–September. The annual precipitation efficiency in 2013 at Lovech and Burgas is about 6 %.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-06
    Description: Global Navigation Satellite Systems (GNSS) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago and today it is a well-established research field. This review covers the state-of-the-art in GNSS meteorology in Europe. Discussed are the advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring. Reviewed are the GNSS processing techniques and tropospheric products. Given is a summary of the use of the products for validation and impact studies with operational Numerical Weather Prediction (NWP) models as well as very short weather prediction (nowcasting) case studies. Climate research with GNSS is an emerging field of research, the studies so far have been limited to comparison with the climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 "Advanced Global Navigation Satellite Systems tropospheric products for monitoring Severe Weather Events and Climate" (GNSS4SWEC, http://gnss4swec.knmi.nl ).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-01
    Print ISSN: 1364-6826
    Electronic ISSN: 1879-1824
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...