ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 333-340 
    ISSN: 0006-3592
    Keywords: fluoride-modified zirconia ; expanded bed ; packed bed ; protein adsorption ; adsorption-desorption kinetics ; intraparticle diffusion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The expanded bed characteristics of 75-103μm fluoride-modified zirconia (FmZr) particles synthesized by a fed batch oil emulsion process were investigated. These particles are distinguished from commercially available expanded-bed adsorbents by virtue of their high density (2.8 g/cc) and the mixed mode protein retention mechanism which allows for the retention of both cationic and anionic proteins. The linear velocity versus bed porosity data agree with the Richardson-Zaki relationship with the terminal velocity in infinite medium of 2858.4 cm/h and a bed expansion index of 5.1. Residence time distribution (RTD) studies and bovine serum albumin (BSA) adsorption studies were performed as a function of the height of the settled bed to the column diameter (H:D) ratio and degree of bed expansion with superficial velocities of 440 to 870 cm/h. The settled bed, a 2× expanded bed, and a 3× expanded bed were studied for the H:D ratios of 1:1, 2:1, and 3:1. The dynamic binding capacity (DBC) at 5% breakthrough was low (2-8 mg BSA/mL settled bed) and was independent of the H:D ratio or the degree of bed expansion. The saturation DBC was 32.3 ± 7.0 mg BSA/mL settled bed. The adsorption-desorption kinetics and intraparticle diffusion for protein adsorption on FmZr (38-75 μm) were investigated by studying the packed bed RTD and BSA adsorption as a function of temperature and flow rate. The data show that the adsorption-desorption kinetics along with intraparticle diffusion significantly influence protein adsorption on FmZr. Low residence times (∼0.8 min) of BSA result in a DBC at 5% breakthrough which is 3.5-fold lower compared to that at 6-fold higher protein residence time. At low linear velocity (45 cm/h) the breakthrough curve is nearly symmetrical and becomes asymmetrical and more dispersed at higher linear velocity (270 cm/h) due to the influence of slow adsorption-desorption kinetics and intraparticle diffusion.© 1998 John Wiley & Sons, Inc. Bioeng 60: 333-340, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...