ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 21 (1982), S. 473-477 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Maxicell labelling and two-dimensional gel electro-phoresis (2-D PAGE) have identified the proteins encoded by sspA and sspB (SspA, SspB) as proteins D27.1 and A25.8, respectively, in the Escherichia coli gene-protein database. SspA expression increases with decreasing growth rate and is induced by glucose, nitrogen, phosphate or amino acid starvation. The promoter, Pssp, is similar to gearbox promoters. Inactivation of SspA (sspA::neo) blocks sspB expression. [35S]-methionine-labelled proteins synthesized during growth and during stationary phase are different in δsspA strains compared to sspA strains. This difference is enhanced during extended stationary phase (24–72 h). Long-term (10 d) viability of arginine-starved isogenic strains shows that sspA cultures remain viable significantly longer than δsspA mutants. 2-D PAGE of proteins expressed during exponential growth shows that expression of at least 11 proteins is altered in δsspA strains. A functional relA gene is required for sspA to affect protein synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 12 (1993), S. 114-120 
    ISSN: 1476-5535
    Keywords: Conduction microcalorimetry ; Monitoring cellular activity ; ThermotolerantBacillus ; Acetic acid ; Bacillus physiology ; Acetic acid inhibition ; Specific heat evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A method is described to determine power of heat-time curves by conduction microcalorimetry in order to monitor the viability and ability of a thermotolerantBacillus strain to secrete acetic acid both during exponential growth and during stationary-phase. In this system secreted acetic acid is neutralized by an insoluble source of lime (dolime) which results in a poor correlation between optical density and culture dry weight. As an alternative, cells and residual dolime were rapidly resuspended in isothermal fresh medium with glucose in a conduction microcalorimeter. Heat evolution was rapid over a period of 200–800 s. Steady state heat evolution rate decreased as a function of culture time and did not correlate with: 1) specific growth rate: 2) viable cell number: 3) glucose consumption rate; or 4) acetic acid secretion rate. Glucose consumption and acetic acid secretion during the stationary growth phase were correlated with specific heat evolution rate. These initial results indicate that this technique may be useful for further development as an on-line flow or stopped-flow method to monitor the physiology of bacilli in response to nutrient depletion or growth inhibition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3592
    Keywords: lysine ; thermotolerant ; methylotroph ; Bacillus methanolicus ; kinetic model ; three-phase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m3) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50°C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VFcstr) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. © 1996 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 51 (1996), S. 360-370 
    ISSN: 0006-3592
    Keywords: induction ; Escherichia coli ; biofilms ; immobilization ; protein synthesis in starved bacteria ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Activation and regeneration of whole cell biocatalytic activity via initial and subsequent induction of the lacZ gene was investigated in starved Escherichia coli using a novel synthetic biofilm. Stationary-phase bacteria were entrapped in 10-80 μm thick multi-layer films, where a copolymer of acrylic and vinyl acetate was the immobilization matrix. The E. coli were placed in a defined starvation medium containing essentially no nitrogen or carbon source and induced initially using lactose or isopropylthiogalactoside (IPTG). Subsequent inductions were performed with IPTG. Comparison studies with suspended bacteria showed that when IPTG was the initial inducing agent, induction kinetics are linear for both immobilized and suspended cells. After induction with lactose, however, a lag time is noted for suspended cells, but not for E. coli in the biofilm. Biocatalytic activity was successfully regenerated by re-inducing starved suspended cells 1-3 days after an initial induction with lactose. This regeneration was demonstrated in the synthesis of additional active β-galactosidase. However, immobilized cells could be re-induced for at least 17 days after the initial induction, and viability in the synthetic biofilms remained greater than 90%, demonstrating that periodic induction is a valuable method for extending the life of whole cell biocatalysts. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 262-272 
    ISSN: 0006-3592
    Keywords: monoclonal antibody secretory pathway ; structured kinetic model ; transient response ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dynamic behavior of the monoclonal antibody (MAb) secretory pathway is studied by transient simulations using our previously developed structured kinetic model for antibody synthesis and secretion by hybridoma cells. The response of the secretory pathway to blocks in specific pathway steps and step changes in characteristic pathway parameters is presented in order to gain a better understanding of pathway dynamics and identify possible ratelimiting steps in the pathway. Model simulations suggest that the step of antibody assembly in the endoplasmic reticulum (ER) is a very good candidate for a rate-limiting step in the antibody secretory pathway in fast-growing hybridoma cells, whereas translation of the heavy and light chains is most likely rate-limiting in slowly growing or stationary phase cells. Transient simulation results are compared with experimentally observed transient changes in specific antibody secretion rates and used to suggest strategies for optimizing antibody secretion in large-scale production systems.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 251-261 
    ISSN: 0006-3592
    Keywords: monoclonal antibody secretory pathway ; structured kinetic model ; factorial design ; steady-state simulations ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Steady-state simulations using our previously developed structured kinetic model of antibody synthesis and secretion by hybridoma cells are used here in conjunction with factorial design analysis to identify intracellular parameters important in determining the specific antibody secretion rate and predict the dependence of this rate on cell specific growth rate. Simulation results suggest that the specific growth rate, the assembly rate of the heavy and light chains and the heavy- and -chain gene dosage can significantly affect the rate of antibody secretion. Based on these results, environmental and/or genetic manipulation approaches are proposed for maximizing the specific antibody secretion rate and the antibody volumetric productivity in large-scale antibody production systems.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3592
    Keywords: specific secretion rate ; animal cell culture ; hybridoma ; osmotic stress ; variance of specific secretion rate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The specific secretion rate (q, μg protein secreted/viable cell-h) and its variance are very useful to compare the capability of cell lines for protein secretion. An assessment of specific secretion rate variability is also beneficial and important when the specific secretion rate is to be used as an on-line process parameter to monitor culture production behavior or for in-process decisionmaking. Experimental errors in mammalian cell culture (e.g., protein concentration measurement and cell counting) and estimation error in the method of calculating q contribute to the total variance of the specific secretion rate. Although the variance of q is essential for comparing the differences between cell lines and the response of the same cell line to different nutrient or environmental conditions, few methods for calculating the variance of the specific secretion rate have been reported. As a model system, we have used the weighted jackknife method and the delta method to calculate the variance in the specific secretion rate of a murine monoclonal antibody (qmAb) determined by a differential method. These methods were applied to calculate qmAb and its standard deviation to determine the change in qmAb kinetics during batch culture of the 9.2.27 hybridoma in response to growth in hyperosmotic media or osmotic stress. Without osmotic stress, during exponential growth in DMEM + 5% FBS spinner culture, the estimate of qmAb decreases at least threefold. Results indicate that the 9.2.27 hybridoma responds to hyperosmotic media (400 mOsm, 470 mOsm) by significantly reducing the degree of qmAb decrease in the exponential phase, thus maintaining a higher qmAb through the stationary phase. The trend of qmAb during the batch cultures studied is further confirmed by t-test. Osmotic stress is statistically shown to be able to alter significantly the hybridoma-specific mAb secretion kinetics during batch culture. Determination of the variance of specific secretion rate using the weighted jackknife method offers a powerful approach for establishing the confidence limits of specific protein secretion rate between cell cultures in different nutritional or osmotic environments. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 333-340 
    ISSN: 0006-3592
    Keywords: fluoride-modified zirconia ; expanded bed ; packed bed ; protein adsorption ; adsorption-desorption kinetics ; intraparticle diffusion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The expanded bed characteristics of 75-103μm fluoride-modified zirconia (FmZr) particles synthesized by a fed batch oil emulsion process were investigated. These particles are distinguished from commercially available expanded-bed adsorbents by virtue of their high density (2.8 g/cc) and the mixed mode protein retention mechanism which allows for the retention of both cationic and anionic proteins. The linear velocity versus bed porosity data agree with the Richardson-Zaki relationship with the terminal velocity in infinite medium of 2858.4 cm/h and a bed expansion index of 5.1. Residence time distribution (RTD) studies and bovine serum albumin (BSA) adsorption studies were performed as a function of the height of the settled bed to the column diameter (H:D) ratio and degree of bed expansion with superficial velocities of 440 to 870 cm/h. The settled bed, a 2× expanded bed, and a 3× expanded bed were studied for the H:D ratios of 1:1, 2:1, and 3:1. The dynamic binding capacity (DBC) at 5% breakthrough was low (2-8 mg BSA/mL settled bed) and was independent of the H:D ratio or the degree of bed expansion. The saturation DBC was 32.3 ± 7.0 mg BSA/mL settled bed. The adsorption-desorption kinetics and intraparticle diffusion for protein adsorption on FmZr (38-75 μm) were investigated by studying the packed bed RTD and BSA adsorption as a function of temperature and flow rate. The data show that the adsorption-desorption kinetics along with intraparticle diffusion significantly influence protein adsorption on FmZr. Low residence times (∼0.8 min) of BSA result in a DBC at 5% breakthrough which is 3.5-fold lower compared to that at 6-fold higher protein residence time. At low linear velocity (45 cm/h) the breakthrough curve is nearly symmetrical and becomes asymmetrical and more dispersed at higher linear velocity (270 cm/h) due to the influence of slow adsorption-desorption kinetics and intraparticle diffusion.© 1998 John Wiley & Sons, Inc. Bioeng 60: 333-340, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...