ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-18
    Description: Perception of depth is a fundamental challenge for the visual system, particularly for observers moving through their environment. The brain makes use of multiple visual cues to reconstruct the three-dimensional structure of a scene. One potent cue, motion parallax, frequently arises during translation of the observer because the images of objects at different distances move across the retina with different velocities. Human psychophysical studies have demonstrated that motion parallax can be a powerful depth cue, and motion parallax seems to be heavily exploited by animal species that lack highly developed binocular vision. However, little is known about the neural mechanisms that underlie this capacity. Here we show, by using a virtual-reality system to translate macaque monkeys (Macaca mulatta) while they viewed motion parallax displays that simulated objects at different depths, that many neurons in the middle temporal area (area MT) signal the sign of depth (near versus far) from motion parallax in the absence of other depth cues. To achieve this, neurons must combine visual motion with extra-retinal (non-visual) signals related to the animal's movement. Our findings suggest a new neural substrate for depth perception and demonstrate a robust interaction of visual and non-visual cues in area MT. Combined with previous studies that implicate area MT in depth perception based on binocular disparities, our results suggest that area MT contains a more general representation of three-dimensional space that makes use of multiple cues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2422877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2422877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nadler, Jacob W -- Angelaki, Dora E -- DeAngelis, Gregory C -- R01 EY013644/EY/NEI NIH HHS/ -- R01 EY013644-07/EY/NEI NIH HHS/ -- R01 EY017866/EY/NEI NIH HHS/ -- R01 EY017866-02/EY/NEI NIH HHS/ -- England -- Nature. 2008 Apr 3;452(7187):642-5. doi: 10.1038/nature06814. Epub 2008 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18344979" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Depth Perception/*physiology ; Macaca/*physiology ; Male ; Motion Perception/*physiology ; Neurons/*physiology ; Photic Stimulation ; Retina/physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-08-31
    Description: The possibility has been explored that a subset of physiologically identifiable cells in the visual cortex is especially suited for the processing of stereoscopic depth information. First, characteristics of a disparity detector that would be useful for such processing were outlined. Then, a method was devised by which detailed binocular response data were obtained from cortical cells. In addition, a model of the disparity detector was developed that includes a plausible hierarchical arrangement of cortical cells. Data from the cells compare well with the requirements for the archetypal disparity detector and are in excellent agreement with the predictions of the model. These results demonstrate that a specific type of cortical neuron exhibits the desired characteristics of a disparity detector.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ohzawa, I -- DeAngelis, G C -- Freeman, R D -- EY01175/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1037-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group in Neurobiology, School of Optometry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2396096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cats ; *Depth Perception ; Mathematics ; Models, Neurological ; Neurons/*physiology ; Vision, Binocular ; Visual Cortex/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 24 (2001), S. 203-238 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Binocular disparity provides the visual system with information concerning the three-dimensional layout of the environment. Recent physiological studies in the primary visual cortex provide a successful account of the mechanisms by which single neurons are able to signal disparity. This work also reveals that additional processing is required to make explicit the types of signal required for depth perception (such as the ability to match features correctly between the two monocular images). Some of these signals, such as those encoding relative disparity, are found in extrastriate cortex. Several other lines of evidence also suggest that the link between perception and neuronal activity is stronger in extrastriate cortex (especially MT) than in the primary visual cortex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-10-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-10-10
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-03-01
    Description: ▪ Abstract  Binocular disparity provides the visual system with information concerning the three-dimensional layout of the environment. Recent physiological studies in the primary visual cortex provide a successful account of the mechanisms by which single neurons are able to signal disparity. This work also reveals that additional processing is required to make explicit the types of signal required for depth perception (such as the ability to match features correctly between the two monocular images). Some of these signals, such as those encoding relative disparity, are found in extrastriate cortex. Several other lines of evidence also suggest that the link between perception and neuronal activity is stronger in extrastriate cortex (especially MT) than in the primary visual cortex.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...