ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The temperature dependence of C3 photosynthesis is known to vary with growth environment and with species. In an attempt to quantify this variability, a commonly used biochemically based photosynthesis model was parameterized from 19 gas exchange studies on tree and crop species. The parameter values obtained described the shape and amplitude of the temperature responses of the maximum rate of Rubisco activity (Vcmax) and the potential rate of electron transport (Jmax). Original data sets were used for this review, as it is shown that derived values of Vcmax and its temperature response depend strongly on assumptions made in derivation. Values of Jmax and Vcmax at 25 °C varied considerably among species but were strongly correlated, with an average Jmax : Vcmax ratio of 1·67. Two species grown in cold climates, however, had lower ratios. In all studies, the Jmax : Vcmax ratio declined strongly with measurement temperature. The relative temperature responses of Jmax and Vcmax were relatively constant among tree species. Activation energies averaged 50 kJ mol−1 for Jmax and 65 kJ mol−1 for Vcmax, and for most species temperature optima averaged 33 °C for Jmax and 40 °C for Vcmax. However, the cold climate tree species had low temperature optima for both Jmax(19 °C) and Vcmax (29 °C), suggesting acclimation of both processes to growth temperature. Crop species had somewhat different temperature responses, with higher activation energies for both Jmax and Vcmax, implying narrower peaks in the temperature response for these species. The results thus suggest that both growth environment and plant type can influence the photosynthetic response to temperature. Based on these results, several suggestions are made to improve modelling of temperature responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
 A net, leaf net CO2 assimilation
ca, CO2 concentration of air surrounding a leaf
ci, leaf intercellular CO2 concentration
Δ, 13C isotope discrimination
δ13C, relative stable carbon isotope content
ɛ, ratio of Anet at ca = 560μmol mol–1 to Anet at ca = 360 μmol mol–1
FACE, free-air CO2 enrichment
gw, stomatal conductance to water vapour
Πi, initial leaf osmotic potential
Rt, relative water content at incipient turgor loss
Ψl, xylem water potential of leaves
Ψm, soil matric potential

Elevated CO2 is expected to reduce forest water use as a result of CO2-induced stomatal closure, which has implications for ecosystem-scale phenomena controlled by water availability. Leaf-level CO2 and H2O exchange responses and plant and soil water relations were examined in a maturing loblolly pine (Pinus taeda L.) stand in a free-air CO2 enrichment (FACE) experiment in North Carolina, USA to test if these parameters were affected by elevated CO2. Current-year foliage in the canopy was continuously exposed to elevated CO2 (ambient CO2+200μmol mol–1) in free-air during needle growth and development for up to 400 d. Photosynthesis in upper canopy foliage was stimulated by 50–60% by elevated CO2 compared with ambient controls. This enhancement was similar in current-year, ambient-grown foliage temporarily measured at elevated CO2 compared with long-term elevated CO2 grown foliage. Significant photosynthetic enhancement by CO2 was maintained over a range of conditions except during peak drought.There was no evidence of water savings in elevated CO2 plots in FACE compared to ambient plots under drought and non-drought conditions. This was supported by evidence from three independent measures. First, stomatal conductance was not significantly different in elevated CO2 versus ambient trees of P. taeda. Calculations of time-integrated ci/ca ratios from analysis of foliar δ13C showed that these ratios were maintained in foliage under elevated CO2. Second, soil moisture was not significantly different between ambient and elevated CO2 plots during drought. Third, pre-dawn and mid-day leaf water potentials were also unaffected by the seasonal CO2 exposure, as were tissue osmotic potentials and turgor loss points. Together the results strongly support the hypothesis that maturing P. taeda trees have low stomatal responsiveness to elevated CO2. Elevated CO2 effects on water relations in loblolly pine-dominated forest ecosystems may be absent or small apart from those mediated by leaf area. Large photosynthetic enhancements in the upper canopy of P. taeda by elevated CO2 indicate that this maturing forest may have a large carbon sequestration capacity with limiting water supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Seasonal changes in photosynthesis, leaf nitrogen (N) contents and leaf mass per area (LMA) were observed over three growing seasons in open-grown sun-lit leaves of red maple (Acer rubrum), sugar maple (A. sacchamm) and northern pin oak (Quereus ellipsoidalis) trees in southern Wisconsin. Net photosynthesis and leaf N were highly linearly correlated on both mass and area bases within all species from late spring until leaf senescence in fall. Very early in the growing season leaves had high N concentrations, but low photosynthetic rates per unit leaf N, suggesting that leaves were not fully functionally developed at that time. Leaf N per unit area and LMA had nonparallel seasonal patterns, resulting in differing relationships between leaf N/area and LMA in the “early versus late growing season. As a result of differences in seasonal patterns between leaf N/area and LMA, net photosynthesis/area was higher for a given LMA in the spring than fall, and the overall relationships between these two parameters were poor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas exchange and eddy covariance fluxes, sampled for a 10-d period each at the fertilized stand and at the control stand. Respiration from the forest floor and above-ground biomass was measured using chambers during the experiment. Fertilization doubled leaf area index (LAI) and increased leaf carboxylation capacity by 20%. However, this increase in total LAI translated into an increase of only 25% in modelled sunlit LAI and in canopy photosynthesis. It is shown that the same climatic and environmental conditions that enhance photosynthesis in the September and October periods also cause an increase in respiration The increases in respiration counterbalanced photosynthesis and resulted in negligible NEE differences between fertilized and control stands. The fact that total biomass of the fertilized stand exceeded 2·5 times that of the control, suggests that the counteracting effects cannot persist throughout the year. In fact, modelled annual carbon balance showed that gross primary productivity (GPP) increased by about 50% and that the largest enhancement in NEE occurred in the spring and autumn, during which cooler temperatures reduced respiration more than photosynthesis. The modelled difference in annual NEE between fertilized  and  control  stands  (approximately  200 1;g 2;C 3;m−2 y−1)  suggest that the effect of fertilization was sufficiently large to transform the stand from a net terrestrial carbon source to a net sink.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Growth in elevated pCO2 generally leads to a stimulation of net CO2 uptake rate. However, with long-term growth the magnitude of this stimulation is often reduced. This phenomenon, termed acclimation, has been largely attributed to a loss of Rubisco (ribulose 1,5 bisphosphate carboxylase). The mechanism by which Rubisco content declines with long-term growth is not certain. There is evidence for a sugar-mediated, selective down-regulation of Rubisco protein and also for a non-selective loss of total leaf nitrogen, which impacts Rubisco levels indirectly. Over a season, and including needles at different developmental stages, we investigated these two potential mechanisms in well-developed Pinus taeda grown for approximately 2·5 years in elevated (56 Pa) pCO2 using free air CO2 enrichment technology. Photosynthetic acclimation, as manifested by a decrease in the activity of Rubisco measured both in vivo (− 25%, via gas exchange) and in vitro (− 35%, via enzyme assays), was observed with growth in elevated pCO2. This acclimation was observed in one-year-old needles but not in current-year needles. Needles exhibiting acclimation had reduced levels of Lsu Rubisco (− 25%) and an increased foliar carbohydrate content (+ 30%) but showed no evidence of a decrease in needle nitrogen or total protein content. These data support the concept that photosynthetic acclimation in elevated pCO2 is caused by a selective down-regulation of Rubisco.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A spectrum of models that estimate assimilation rate A from intercellular carbon dioxide concentration (Ci) and measured stomatal conductance to CO2 (gc) were investigated using leaf-level gas exchange measurements. The gas exchange measurements were performed in a uniform loblolly pine stand (Pinus taeda L.) using the Free Air CO2 Enrichment (FACE) facility under ambient and elevated atmospheric CO2 for 3 years. These measurements were also used to test a newly proposed framework that combines basic properties of the A–Ci curve with a Fickian diffusion transport model to predict the relationship between Ci/Ca and gc, where Ca is atmospheric carbon dioxide concentration. The widely used Ball–Berry model and five other models as well as the biochemical model proposed by Farquhar et al. (1980) were also reformulated to express variations in Ci/Ca as a function of their corresponding driving mechanisms. To assess the predictive capabilities of these approaches, their respective parameters were estimated from independent measurements of long-term stable carbon isotope determinations (δ13C), meteorological variables, and ensemble A–Ci curves. All eight approaches reproduced the measured A reasonably well, in an ensemble sense, from measured water vapour conductance and modeled Ci/Ca. However, the scatter in the instantaneous A estimates was sufficiently large for both ambient and elevated Ca to suggest that other transient processes were not explicitly resolved by all eight parameterizations. An important finding from our analysis is that added physiological complexity in modeling Ci/Ca (when gc is known) need not always translate to increased accuracy in predicting A. Finally, the broader utility of these approaches to estimate assimilation and net ecosystem exchange is discussed in relation to elevated atmospheric CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Leaf lifespan ; Amazon ; Photosynthesis ; Specific leaf area ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Key words  Pinus taeda ; Xylem cavitation ; Soil water transport ; Root-shoot relations ; Stomatal regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (Pinus taeda L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (E crit) allowed by the soil-leaf continuum. We expected that trees on both soils would approach E crit during drought. Trees in sand, however, should face greater drought limitation because of steeply declining hydraulic conductivity in sand at high soil water potential (Ψ S). Transport considerations suggest that trees in sand should have higher root to leaf area ratios (A R:A L), less negative leaf xylem pressure (Ψ L), and be more vulnerable to xylem cavitation than trees in loam. The A R:A L was greater in sand versus loam (9.8 vs 1.7, respectively). This adjustment maintained about 86% of the water extraction potential for both soils. Trees in sand were more deeply rooted (〉1.9 m) than in loam (95% of roots 〈0.2 m), allowing them to shift water uptake to deeper layers during drought and avoid hydraulic failure. Midday Ψ L was constant for days of high evaporative demand, but was less negative in sand (–1.6 MPa) versus loam (–2.1 MPa). Xylem was more vulnerable to cavitation in sand versus loam trees. Roots in both soils were more vulnerable than stems, and experienced the greatest predicted loss of conductivity during drought. Trees on both soils approached E crit during drought, but at much higher Ψ S in sand (〈–0.4 MPa) than in loam (〈–1.0 MPa). Results suggest considerable phenotypic plasticity in water use traits for P. taeda which are adaptive to differences in soil porosity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Leaf life-span ; Evergreen ; Deciduous ; Photosynthesis ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationship between photosynthetic capacity (A max) and leaf nitrogen concentration (N) among all C3 species can be described roughly with one general equation, yet within that overall pattern species groups or individual species may have markedly different A max-N relationships. To determine whether one or several predictive, fundamental A max-N relationships exist for temperate trees we measured A max, specific leaf area (SLA) and N in 22 broad-leaved deciduous and 9 needle-leaved evergreen tree species in Wisconsin, United States. For broad-leaved deciduous trees, mass-based A max was highly correlated with leaf N (r 2=0.75, P〈0.001). For evergreen conifers, mass-based A max was also correlated with leaf N (r 2=0.59, P〈0.001) and the slope of the regression (rate of increase of A max per unit increase in N) was lower (P〈0.001) by two-thirds than in the broad-leaved species (1.9 vs. 6.4 μmol CO2 g−1 N s−1), consistent with predictions based on tropical rain forest trees of short vs. long leaf life-span. On an area basis, there was a strong A max-N correlation among deciduous species (r 2=0.78, P〈0.001) and no correlation (r 2=0.03, P〉0.25) in the evergreen conifers. Compared to deciduous trees at a common leaf N (mass or area basis), evergreen trees had lower A max and SLA. For all data pooled, both leaf N and A max on a mass basis were correlated (r 2=0.6) with SLA; in contrast, area-based leaf N scaled tightly with SLA (r 2=0.81), but area-based A max did not (r 2=0.06) because of low A max per unit N in the evergreen conifers. Multiple regression analysis of all data pooled showed that both N (mass or area basis) and SLA were significantly (P〈0.001) related to A max on mass (r 2=0.80) and area (r 2=0.55) bases, respectively. These results provide further evidence that A max-N relationships are fundamentally different for ecologically distinct species groups with differing suites of foliage characteristics: species with long leaf life-spans and low SLA, whether broad-leaved or needle-leaved, tend to have lower A max per unit leaf N and a lower slope and higher intercept of the A max-N relation than do species with shorter leaf life-span and higher SLA. A single global A max-N equation overestimates and underestimates A max for temperate trees at the upper and lower end of their leaf N range, respectively. Users of A max-N relationships in modeling photosynthesis in different ecosystems should appreciate the strengths and limitations of regression equations based on different species groupings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 122 (2000), S. 163-174 
    ISSN: 1432-1939
    Keywords: Key words Elevated CO2 ; Shade tolerance ; Photosynthetic induction ; Stomatal conductance ; Understory trees
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Few studies have evaluated elevated CO2 responses of trees in variable light despite its prevalence in forest understories and its potential importance for sapling survival. We studied two shade-tolerant species (Acer rubrum, Cornus florida) and two shade-intolerant species (Liquidambar styraciflua, Liriodendron tulipifera) growing in the understory of a Pinus taeda plantation under ambient and ambient+200 ppm CO2 in a free air carbon enrichment (FACE) experiment. Photosynthetic and stomatal responses to artificial changes in light intensity were measured on saplings to determine rates of induction gain under saturating light and induction loss under shade. We expected that growth in elevated CO2 would alter photosynthetic responses to variable light in these understory saplings. The results showed that elevated CO2 caused the expected enhancement in steady-state photosynthesis in both high and low light, but did not affect overall stomatal conductance or rates of induction gain in the four species. Induction loss after relatively short shade periods (〈6 min) was slower in trees grown in elevated CO2 than in trees grown in ambient CO2 despite similar decreases in stomatal conductance. As a result leaves grown in elevated CO2 that maintained induction well in shade had higher carbon gain during subsequent light flecks than was expected from steady-state light response measurements. Thus, when frequent sunflecks maintain stomatal conductance and photosynthetic induction during the day, enhancements of long-term carbon gain by elevated CO2 could be underestimated by steady-state photosynthetic measures. With respect to species differences, both a tolerant, A. rubrum, and an intolerant species, L. tulipifera, showed rapid induction gain, but A. rubrum also lost induction rapidly (c. 12 min) in shade. These results, as well as those from independent studies in the literature, show that induction dynamics are not closely related to species shade tolerance. Therefore, it cannot be concluded that shade-tolerant species necessarily induce faster in the variable light conditions common in understories. Although our study is the first to examine dynamic photosynthetic responses to variable light in contrasting species in elevated CO2, studies on ecologically diverse species will be required to establish whether shade-tolerant and -intolerant species show different photosynthetic responses in elevated CO2 during sunflecks. We conclude that elevated CO2 affects dynamic gas exchange most strongly via photosynthetic enhancement during induction as well as in the steady state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...