ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Leaf lifespan ; Amazon ; Photosynthesis ; Specific leaf area ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Acer saccharum ; Photosynthesis ; Forest canopy ; Sugar maple ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 97 (1994), S. 62-72 
    ISSN: 1432-1939
    Keywords: Amazon ; Rain forests ; Leaf life-span ; Photosynthesis ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Among species, photosynthetic capacity (Amax) is usually related to leaf nitrogen content (N), but variation in the species-specific relationship is not well understood. To address this issue, we studied Amax-N relationships in 23 species in adjacent Amazonian communities differentially limited by nitrogen (N), phosphorus (P), and/or other mineral nutrients. Five species were studied in each of three late successional forest types (Tierra Firme, Caatinga and Bana) and eight species were studied on disturbed sites (cultivated and early secondary successional Tierra Firme plots). Amax expressed on a mass basis (Amass) was correlated (p〈0.05) with Nmass in 17 of 23 species, and Amax on an area basis (Aarea) was correlated (p〈0.05) with Narea in 21 of 23 species. The slopes of Amax-N relationships were greater and intercepts lower for disturbance adapted early successional species than for late successional species. On a mass basis, the Amax-N slope averaged ≈15 μmol CO2 [g N]-1 s-1 for 7 early secondary successional species and ≈4 μmol CO2 [g N]-1 s-1 for 15 late successional species, respectively. Species from disturbed sites had shorter leaf life-span and greater specific leaf area (SLA) than late successional species. Across all 23 species, the slope of the Amass-Nmass relationship was related (p〈0.001) positively to SLA (r2=0.70) and negatively to leaf life-span (r2=0.78) and temporal niche during secondary succession (years since cutting-and-burning, r2=0.90). Thus, disturbance adapted early successional species display a set of traits (short leaf life-span, high SLA and Amax and a steep slope of Amax-N) conducive to resource acquisition and rapid growth in their high resource regeneration niches. The significance and form of the Amax-N relationship were associated with the relative nutrient limitations in the three late successional communities. At species and community levels, Amax was more highly dependent on N in the N-limited Caatinga than in the P-and N-limited Bana and least in the P-and Ca-limited Tierra Firme on oxisol-and differences among these three communities in their massbased Amax-N slope reflects this pattern (6.0, 2.4, and 0.7 μmol CO2 [g N]-1 s-1, respectively). Among all 23 species, the estimated leaf Nmass needed to reach compensation (net photosynthesis ≈ zero) was positively related to the Amass-Nmass slope and to dark respiration rates and negatively related to leaf life-span. Variation among species in the Amax-N slope was well correlated with potential photosynthetic N use efficiency, Amax per unit leaf N. The dependence of Amax on N and the form of the relationship vary among Amazonian species and communities, consistent with both relative availabilities of N, P, and other mineral nutrients, and with intrinsic ecophysiological characteristics of species adapted to habitats of varying resource availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Leaf life-span ; Evergreen ; Deciduous ; Photosynthesis ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationship between photosynthetic capacity (A max) and leaf nitrogen concentration (N) among all C3 species can be described roughly with one general equation, yet within that overall pattern species groups or individual species may have markedly different A max-N relationships. To determine whether one or several predictive, fundamental A max-N relationships exist for temperate trees we measured A max, specific leaf area (SLA) and N in 22 broad-leaved deciduous and 9 needle-leaved evergreen tree species in Wisconsin, United States. For broad-leaved deciduous trees, mass-based A max was highly correlated with leaf N (r 2=0.75, P〈0.001). For evergreen conifers, mass-based A max was also correlated with leaf N (r 2=0.59, P〈0.001) and the slope of the regression (rate of increase of A max per unit increase in N) was lower (P〈0.001) by two-thirds than in the broad-leaved species (1.9 vs. 6.4 μmol CO2 g−1 N s−1), consistent with predictions based on tropical rain forest trees of short vs. long leaf life-span. On an area basis, there was a strong A max-N correlation among deciduous species (r 2=0.78, P〈0.001) and no correlation (r 2=0.03, P〉0.25) in the evergreen conifers. Compared to deciduous trees at a common leaf N (mass or area basis), evergreen trees had lower A max and SLA. For all data pooled, both leaf N and A max on a mass basis were correlated (r 2=0.6) with SLA; in contrast, area-based leaf N scaled tightly with SLA (r 2=0.81), but area-based A max did not (r 2=0.06) because of low A max per unit N in the evergreen conifers. Multiple regression analysis of all data pooled showed that both N (mass or area basis) and SLA were significantly (P〈0.001) related to A max on mass (r 2=0.80) and area (r 2=0.55) bases, respectively. These results provide further evidence that A max-N relationships are fundamentally different for ecologically distinct species groups with differing suites of foliage characteristics: species with long leaf life-spans and low SLA, whether broad-leaved or needle-leaved, tend to have lower A max per unit leaf N and a lower slope and higher intercept of the A max-N relation than do species with shorter leaf life-span and higher SLA. A single global A max-N equation overestimates and underestimates A max for temperate trees at the upper and lower end of their leaf N range, respectively. Users of A max-N relationships in modeling photosynthesis in different ecosystems should appreciate the strengths and limitations of regression equations based on different species groupings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...