ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-03-15
    Description: Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsai, Isheng J -- Zarowiecki, Magdalena -- Holroyd, Nancy -- Garciarrubio, Alejandro -- Sanchez-Flores, Alejandro -- Brooks, Karen L -- Tracey, Alan -- Bobes, Raul J -- Fragoso, Gladis -- Sciutto, Edda -- Aslett, Martin -- Beasley, Helen -- Bennett, Hayley M -- Cai, Jianping -- Camicia, Federico -- Clark, Richard -- Cucher, Marcela -- De Silva, Nishadi -- Day, Tim A -- Deplazes, Peter -- Estrada, Karel -- Fernandez, Cecilia -- Holland, Peter W H -- Hou, Junling -- Hu, Songnian -- Huckvale, Thomas -- Hung, Stacy S -- Kamenetzky, Laura -- Keane, Jacqueline A -- Kiss, Ferenc -- Koziol, Uriel -- Lambert, Olivia -- Liu, Kan -- Luo, Xuenong -- Luo, Yingfeng -- Macchiaroli, Natalia -- Nichol, Sarah -- Paps, Jordi -- Parkinson, John -- Pouchkina-Stantcheva, Natasha -- Riddiford, Nick -- Rosenzvit, Mara -- Salinas, Gustavo -- Wasmuth, James D -- Zamanian, Mostafa -- Zheng, Yadong -- Taenia solium Genome Consortium -- Cai, Xuepeng -- Soberon, Xavier -- Olson, Peter D -- Laclette, Juan P -- Brehm, Klaus -- Berriman, Matthew -- 085775/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- BBG0038151/Biotechnology and Biological Sciences Research Council/United Kingdom -- MOP#84556/Canadian Institutes of Health Research/Canada -- TW008588/TW/FIC NIH HHS/ -- England -- Nature. 2013 Apr 4;496(7443):57-63. doi: 10.1038/nature12031. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485966" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Animals ; Biological Evolution ; Cestoda/drug effects/*genetics/physiology ; Cestode Infections/drug therapy/metabolism ; Conserved Sequence/genetics ; Echinococcus granulosus/genetics ; Echinococcus multilocularis/drug effects/genetics/metabolism ; Genes, Helminth/genetics ; Genes, Homeobox/genetics ; Genome, Helminth/*genetics ; HSP70 Heat-Shock Proteins/genetics ; Humans ; Hymenolepis/genetics ; Metabolic Networks and Pathways/genetics ; Molecular Targeted Therapy ; Parasites/drug effects/*genetics/physiology ; Proteome/genetics ; Stem Cells/cytology/metabolism ; Taenia solium/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1955
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Several inbred strains of mice were infected by intraperitoneal injection of tenTaenia crassiceps cysticerci per mouse. Genes linked with the major histocompatibility complex (H-2) were found to influence parasite growth greatly, as demonstrated by the different parasite loads of H-2 congenic mice with BALB background: BALB/c (H-2d) mice were the most susceptible, whereas BALB/k (H-2k) and BALB/b (H-2b) animals were comparatively resistant. Non-H-2 genes had no significant effect on susceptibility in H-2d strains, as reflected by the similar parasite loads in BALB/c, DBA/2, and (BALB/cxDBA/2)F1 mice. Using the H-2b (BALB/b, C57BL/6J) and H-2k (C3H/HeJ, BALB/k, and C3HeB/FeJ) strains, we found that non-H-2 background genes caused a small but significant influence on parasite load. A recombinant mouse strain alleles (Kk, Ik, Sd, Dd) was also susceptible, indicating that S and/or D regions of the H-2d complex are probably involved in the control of resistance to murine cysticercosis. Females of all mouse strains were more susceptible than males. The same effects were observed for H-2 genes and sex, with two strains ofT. crassiceps differing in their rate of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...