ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    COASTAL EDUCATION & RESEARCH FOUNDATION
    In:  EPIC3Journal of Coastal Research, COASTAL EDUCATION & RESEARCH FOUNDATION, 54, pp. 225-243, ISSN: 0749-0208
    Publication Date: 2017-02-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 20 (1992), S. 57-64 
    ISSN: 1432-0495
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract A coastwide study of the relationship between marsh aggradation and water level changes along the rapidly deteriorating Louisiana gulf coast was conducted. Rate of vertical marsh accretion determined from137Cs dating was compared to water level changes or submergence. Results identified marsh locations that are not keeping pace with submergence. Coastwide vertical accretion rates on the order of 0.7–0.8 cm/yr are not sufficient to keep pace with water level increases occurring at rates in most locations of over 1.0 cm/yr. Submergence rates were four to five times greater than eustatic sea level change for the Gulf of Mexico. Louisiana gulf coast marshes are likely to continue deteriorating unless means are implemented for distributing Mississippi River sediment to the marsh. It is estimated that sediment equivalent to less than 10 percent of the present annual suspended load of the Mississippi would provide enough sediment for marsh accretionary processes to compensate for submergence or water level increase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 16 (1993), S. 163-168 
    ISSN: 1432-0789
    Keywords: Greenhouse gases ; Methane emission ; Methane entrapment ; Redox potential ; Rice fields ; Soil organic carbon ; Soil properties ; Soil pH ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory incubation experiments were conducted to study the effects of soil chemical and physical properties on CH4 emission and entrapment in 16 selected soils with a pH range of 4.7–8.1, organic matter content of 0.72–2.38%, and soil texture from silt to clay. There was no significant correlation with CH4 emission for most of the important soil properties, including soil aerobic pH (measured before anaerobic incubation), total Kjeldahl N, cation exchange capacity, especially soil organic matter, and soil water-soluble C, which were considered to be critical controlling factors of CH4 emission. A lower CH4 emission was observed in some soils with a higher organic matter content. Differences in soil Fe and Mn contents and their chemical forms contributed to the this observation. A significant correlation between the CH4 emission and the soil organic C content was observed only after stratifying soils into subgroups according to the level of CH4 emission in soils not amended with organic matter. The results also showed that the soil redox potential (Eh), anaerobic pH, anerobic pH, and biologically reducible Fe and Mn affected CH4 emission significantly. Urea fertilization promoted CH4 emission in some soils and inhibited it in others. This result appeared to be related to the original soil pH. CH4 entrapment was positively correlated with soil clay content, indicating the importance of soil physical characteristics in reducing CH4 emissions to the atmosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 28 (1992), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Phosphorus fluxes and water quality functions of a bottomland hardwood and freshwater marsh wetland soil were compared. The effect of soil physicochemical conditions, phosphorus loading rate, and diffusive exchange between soils and the overlying food water column on phosphorus release and retention were studied. The predominantly mineral swamp forest soil displayed greater phosphorus sorption potential than the organic freshwater marsh soil. Moreover, due to its low bulk density (0.11 g cm−3), the freshwater marsh soil surface area required for phosphorus retention is very large compared to the bottomland hardwood wetland soil. For both wetlands, soil redox status affected P release and assimilatory capacity. The more reducing the soils, the smaller their phosphorus retention capacity (greater their release). Phosphorus removal from the overlying water column into the wetland soils followed a first-order kinetic model. Under similar hydrological conditions, phosphorus was found to diffuse 1.2 times faster to the bottom. land hardwood soil than in the freshwater marsh soil. Results indicate that while the bottomland hardwood wetland soil will serve as a sink for phosphorus entering such wetland, phosphorus will be released and exported from the freshwater marsh soil into adjacent ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 26 (1990), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1−1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3−-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1−1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m−2 yr−1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m−2 yr−1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1−1 and the adsorption rates were as great as 300 μg P cm−2 day−1 Using the 137C s dating techniques, approximately 18 g N m−2 yr−1 and 1.2 g P m−2 yr−1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 74 (1988), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Spartina alterniflora Lois. plants were grown under controlled sediment-pH-redox conditions. Uptake of added 15NH4-nitrogen and subsequent photosynthetic activity under different redox conditions in the plant root rhizosphere were measured. Data for total plant nitrogen and 15N concentration indicated that nitrogen allocation was not altered by anaerobic conditions of the sediment. However, average net photosynthesis was reduced by up to 35% for plants under anaerobiosis. The results indicate that anaerobiosis in the root rhizosphere, rather than limiting nitrogen uptake, influences photosynthesis and growth of S. alterniflora under anaerobic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Boston, MA, USA : Blackwell Science Inc
    Restoration ecology 8 (2000), S. 0 
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A study was conducted to examine nursery protocols for production of planting stocks used in wetland mitigation projects. Two commercial soil mixtures were tested along with waterlogging, fertilization, and combination treatments. Two marsh species, Panicum hemitomon and Sagittaria lancifolia, were subjected to a two-phase study. During Phase I, watering and fertilization treatments were applied in a 2 × 2 × 2 factorial design with two soils, two watering regimes, and two fertilizer treatments. In Phase II, all plants were subjected to continuous waterlogging (no fertilizer). Soil redox potential was measured, along with plant gas exchange and growth responses. Our data do not support the hypothesis that flood “pre-conditioning” alone can significantly improve plant growth under subsequent flooding. However, fertilization alone or in combination with flooding appeared to enhance shoot and root production in both species during the subsequent flooding. In contrast, flooding alone produced Panicum plants that appeared to remain somewhat susceptible to subsequent flooding as compared to fertilized plants. Sagittaria plants subjected to fertilizer treatment alone did not produce significantly greater total dry weights compared to their controls. Our data indicate that the growth of planting stocks for wetland mitigation can be improved by fertilization in the nursery.Key words: fertilizer, flooding, nursery production, wetland mitigation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 15 (1993), S. 174-178 
    ISSN: 1432-0789
    Keywords: Methane emissions ; Flooded soil ; Greenhouse gas ; Wetland rice ; Mitigation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A field experiment was conducted to determine whether selected nitrification inhibitors (encapsulated calcium carbide and dicyandiamide) and SO inf4 sup-2 -containing compounds [(NH4)2SO4 and Na2SO4] had mitigating effects on CH4 emissions from flooded rice. Microplots were established within a rice bay drill-seeded with the Texmont rice cultivar and CH4 fluxes were measured over the main rice cropping season. Methane emissions over the 77-day sampling period were approximately 230, 240, 260, 290, 310, and 360 kg CH4 ha-1 from the calcium carbide, Na2SO4-rate II, Na2SO4-rate I, (NH4)2SO4, dicyandiamide, and urea (control) treatments, respectively. Reductions in CH4 evolution, compared to the control, ranged from 14 to 35%, depending on treatment. The selected inhibitors and SO inf4 sup-2 -containing compounds appear to be effective in reducing the CH4 emitted from flooded rice fields.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 275 (1978), S. 532-533 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Cores were taken from a streamside and inland Spartina alterniflora salt marsh and from an adjoining shallow water lake in Barataria Basin in Louisiana (2913' N, 907' W). From the streamside location two sediment cores were taken 7 m inland and 5 m apart parallel to a natural stream. Another set of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Salt mash ; Soil redox potential ; Photosynthesis ; Spartina alterniflora
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Spartina alterniflora Lois. plants from a Louisiana salt marsh were subjected to fluctuating levels of soil redox potential under controlled environmental conditions. The experiment was designed to examine the changes in carbon assimilation rates in response to the change in rhizosphere sediment redox condition representing a broad range of reduction normally associated with oxygen deficient environments. Variation in sediment redox potential is frequently encountered by this species in its natural environment in Louisiana's Gulf Coast marshes as a result of tidal patterns. Results indicated some adverse effects of extreme anoxic conditions on carbon assimilation ofS. alterniflora, a possible reflection of this species limited ability for maintaining root oxygenation under rapid, intense reduction in soil redox potential. It was also demonstrated that gas exchange limitations may be temporary and apparently may follow by some recovery. Carbon assimilation rates declined 15 to 21% when soil redox level decreased rapidly to below-200 mV which was followed by substantial recovery. A system for accurate control and measurement of rhizosphere redox potential and simultaneous measurement of plant photosynthetic activity is described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...