ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1572-9788
    Keywords: lectins ; insect resistance ; transgenic plants ; potato (Solanum tuberosum) ; Lepidoptera ; Homoptera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of concanavalin A (ConA), a glucose/mannose-specific lectin from jackbean (Canavalia ensiformis), on insect crop pests from two different orders, Lepidoptera and Homoptera, were investigated. When fed to larvae of tomato moth (Lacanobia oleracea) at a range of concentrations (0.02–2.0% of total protein) in artificial diet, ConA decreased survival, with up to 90% mortality observed at the highest dose level, and retarded development, but had only a small effect on larval weight. When fed to peach-potato aphids (Myzus persicae) at a range of concentrations (1–9μM) in liquid artificial diet, ConA reduced aphid size by up to 30%, retarded development to maturity, and reduced fecundity (production of offspring) by 〉35%, but had little effect on survival. With both insects, there was a poor correlation between lectin dose and the quantitative effect. Constitutive expression of ConA in transgenic potatoes driven by the CaMV 35S promoter resulted in the protein accumulating to levels lower than predicted, possibly due to potato not being able to adequately reproduce the post-translational processing of this lectin which occurs in jackbean. However, the expressed lectin was functionally active as a haemagglutinin. Bioassay of L. oleracea larvae on ConA-expressing potato plants showed that the lectin retarded larval development, and decreased larval weights by 〉45%, but had no significant effect on survival. It also decreased consumption of plant tissue by the larvae. In agreement with the diet bioassay results, ConA-expressing potatoes decreased the fecundity of M. persicae by up to 45%. ConA thus has potential as a protective agent against insect pests in transgenic crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9788
    Keywords: GNA ; insect resistance ; lectins ; Lepidoptera ; potato ; transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Insecticidal effects of three plant-derived genes, those encoding snowdrop lectin (GNA), bean (Phaseolus vulgaris) chitinase (BCH) and wheat α-amylase (WAI), were investigated and compared with effects of the cowpea trypsin inhibitor gene (CpTI). Transgenic potato plants containing each of the three genes singly, and in pairwise combinations were produced. All the introduced genes were driven by the CaMV 35S promoter; expression was readily detectable at the RNA level in transformants, but not detectable accumulation of WAI could be detected in transgenic potatoes containing its encoding gene. GNA and BCH were accumulated at levels up to 2.0% of total soluble protein; both proteins were expressed in a functional form, and GNA was shown to undergo 'correct' N-terminal processing. Accumulation levels of individual proteins were higher in plants containing a single foreign gene than in plants containing two foreign genes. Resistance of the transgenic plants to insect attack was assayed by exposing the plants to larvae of the tomato moth, Lacanobia oleracea. All the plants tested which were expressing GNA showed an enhanced level of resistance. Leaf damage was reduced by more than 50% compared to controls; total insect biomass per plant was reduced by 45-65%, but larval survival was only slightly reduced (20%). These results support the hypothesis that GNA has a significant antifeedant effect on insects. Expression of BCH had no protective effect against this insect. Expression of CpTI in transgenic potatoes had similar effects to expression of GNA on total insect biomass and survival, but did not afford protection against insect damage to the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...