ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 9 (1964), S. 606-606 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 9 (1964), S. 321-323 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica B: Physics of Condensed Matter 160 (1990), S. 293-296 
    ISSN: 0921-4526
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 783-785 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The contribution to soil fertility from the mineralization of organic matter (OM) can be estimated from budgets of carbon and nutrients during agricultural use. A more detailed picture of the mineralization process can be obtained when coarse and fine, mineral-associated ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 68 (1986), S. 466-472 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A comparative analysis on the rate of fine litterfall and its associated nutrient fluxes was carried out in a mixed forest on Tierra Firme, a tall Amazon Caatinga and a Bana on podsolized sands near San Carlos de Rio Negro. There was seasonality in leaf fall and total litterfall in mixed forest and tall Amazon Caatinga forest but no definite trend in the Bana. Litterfall curves were significantly correlated among sites indicating common regulating factors in the three forests. Leaf litter from mixed forest on Tierra Firme was richer in N with extremely low Ca and Mg concentrations; tall Amazon Caatinga litter had higher P and Mg concentration, while Bana litter was low in N but K concentration was twice as high as in the other two forests. Annual fine litterfall in Tierra Firme mixed forest was nearly 4 times higher than in Bana, But N flux was 10 times higher, while Ca and Mg fluxes were similar. Tall Amazon Caatinga had Ca and Mg fluxes in litterfall 2–3 times higher than the other two forests. Within-stand efficiency of nitrogen, calcium and magnesium use, as measured by biomass/nutrient ratios, differentiates Tierra Firme from Caatinga and Bana forest: Tierra Firme has the lowest N, but the highest Ca and Mg use efficiencies. Higher P use efficiency was measured in Bana followed by Tierra Firme and Caatinga; while Tierra Firme and Caatinga showed similar higher K use efficiencies than Bana. N/P ratios indicates that Tierra Firme forest is limited by P availability, while low N availability predominates in Caatinga. Bana appears limited by both N and P. These differences probably relate to variations in degree of sclerophylly and leaf duration which determine leaf nutrient concentrations in the ecosystems studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Amazon rainforests ; Nutrient cycling ; Soil nutrient status ; Toposequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Amazon forests along a toposequence at San Carlos de Rio Negro (Venezuela) show distinct nutrient limitations depending on slope position. Soils were collected by genetic horizons and analysed to provide information on the relationships between soil P and N status and the nutrition of natural forest at three locations along the toposequence. The upper-slope tierra firme sites had total P concentrations between 100 and 200 μg g−1 in the mineral soil fines and between 700 and 1100 μg g−1 in lateritic nodules. Hyphae were seen to explore lateritic nodules and may contribute to P nutrition. Total P in the mineral soil of the lower slope ranged from only 3 to 130 μg g−1. In both the organic mats of the tierra firme and the humic horizon at the lower-slope tall Amazon caatinga site, 50–60% of the P was in inorganic forms, which, in the absence of P-fixing mineral soil, maintain high levels of plant-available P. As a result, the litter mats and humic horizon accounted for over 70% of the total available P in these soils. The proportion of available P increased, and P sorption decreased, downslope, supporting ecological studies which found that tall Amazon caatinga was least P-limited. Soil N and C levels show a maximum at the mid-slope and a minimum at the lower slope. Distributions of biomass C, N and P closely follow those of soil C, N and available (but not total) P along the slope.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: N15 ; nitrogen ; nutrient cycling ; plants ; stable isotopes ; soil ; temperate forest ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more 15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar δ15N values from tropical forests averaged 6.5‰ higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in 15N than other tropical forests. The average δ15N values for tropical forest soils, either for surface or for depth samples, were almost 8‰ higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: N15 ; nitrogen ; nutrient cycling ; plants ; stable isotopes ; soil ; temperate forest ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar δ15N values from tropical forests averaged 6.5‰ higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in15N than other tropical forests. The average δ15N values for tropical forest soils, either for surface or for depth samples, were almost 8‰ higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Stratospheric ozone 1999, Proceedings of the fifth European symposium, Air pollution research report 73, 27. September - 1. October 1999, St. Jean de Luz, France, (N. R. P. Harris, M. Guirlet and G. T. Amanatidis, eds), European Commission, Directorate-Ge, pp. 448-451
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-16
    Description: Chemical ozone loss rates inside the Arctic polar vortexweredetermined in early 1998 and early 1999 by using the Match techniquebased on coordinated ozonesonde measurements. These two wintersprovide the only opportunities in recent years to investigatechemical ozone loss in a warm Arctic vortex under thresholdconditions, i.e., where the preconditions for chlorine activation,and hence ozone destruction, only occurred occasionally. In 1998,results were obtained in January and February between 410 and 520 K.The overall ozone loss was observed to be largely insignificant,with the exception of late February, when those air parcels exposedto temperatures below 195 K were affected by chemical ozone loss. In1999, results are confined to the 475 K isentropic level, where nosignificant ozone loss was observed. Average temperatures were some8 -10 K higher than those in 1995, 1996, and 1997,when substantial chemical ozone loss occurred. The results underlinethe strong dependence of the chemical ozone loss on thestratospheric temperatures. This study shows that enhanced chlorinealone does not provide a sufficient condition for ozone loss. Theevolution of stratospheric temperatures over the next decade will bethe determining factor for the amount of wintertime chemical ozoneloss in the Arctic stratosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...