ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2015-03-20
    Description: We propose a fresh look at the Main Galaxy Sample of the Sloan Digital Sky Survey by packing the galaxies in stellar mass and redshift bins. We show how important it is to consider the emission-line equivalent widths, in addition to the commonly used emission-line ratios, to properly identify retired galaxies (i.e. galaxies that have stopped forming stars and are ionized by their old stellar populations) and not mistake them for galaxies with low-level nuclear activity. We find that the proportion of star-forming galaxies decreases with decreasing redshift in each mass bin, while that of retired galaxies increases. Galaxies with M * 〉 10 11.5 M have formed all their stars at redshift larger than 0.4. The population of AGN hosts is never dominant for galaxy masses larger than 10 10 M . We warn about the effects of stacking galaxy spectra to discuss galaxy properties. We estimate the lifetimes of active galactic nuclei (AGN) relying entirely on demographic arguments – i.e. without any assumption on the AGN radiative properties. We find upper-limit lifetimes of about 1–5 Gyr for detectable AGN in galaxies with masses between 10 10 –10 12 M . The lifetimes of the AGN- dominated phases are a few 10 8  yr. Finally, we compare the star formation histories of star-forming, AGN and retired galaxies as obtained by the spectral synthesis code starlight . Once the AGN is turned on, it inhibits star formation for the next ~0.1 Gyr in galaxies with masses around 10 10 M , ~ 1 Gyr in galaxies with masses around 10 11 M .
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-05
    Description: We identify isolated galaxy triplets in a volume-limited sample from the Sloan Digital Sky Survey Data Release 10. Our final sample has 80 galaxy systems in the redshift range 0.04 ≤ z ≤ 0.1, brighter than M r = –20.5 + 5 log h 70 . Spectral synthesis results and WHAN and BPT diagnostic diagrams were employed to classify the galaxies in these systems as star-forming, active nuclei, or passive/retired. Our results suggest that the brightest galaxies drive the triplet evolution, as evidenced by the strong correlations between properties as mass assembly and mean stellar population age with triplet properties. Galaxies with intermediate luminosity or the faintest one within the triplet seem to play a secondary role. Moreover, the relation between age and stellar mass of galaxies is similar for these galaxies but different for the brightest galaxy in the system. Most of the triplet galaxies are passive or retired, according to the WHAN classification. Low-mass triplets present different fractions of WHAN classes when compared to higher mass triplets. A census of WHAN class combinations shows the dominance of star-forming galaxies in low-mass triplets while retired and passive galaxies prevail in high-mass systems. We argue that these results suggest that the local environment, through galaxy interactions driven by the brightest galaxy, is playing a major role in triplet evolution.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-14
    Description: We aim to investigate the galaxy environment in GAMA Galaxy Groups Catalogue (G3C) using a volume-limited galaxy sample from the Kilo Degree Survey Data Release 3. The k-Nearest Neighbour technique is adapted to take into account the probability density functions of photometric redshifts in our calculations. This algorithm was tested on simulated KiDS tiles, showing its capability of recovering the relation between galaxy colour, luminosity, and local environment. The characterization of the galaxy environment in G3C groups shows systematically steeper density contrasts for more massive groups. The red galaxy fraction gradients in these groups is evident for most of group mass bins. The density contrast of red galaxies is systematically higher at group centres when compared to blue galaxy ones. In addition, distinct group centre definitions are used to show that our results are insensitive to centre definitions. These results confirm the galaxy evolution scenario which environmental mechanisms are responsible for a slow quenching process as galaxies fall into groups and clusters, resulting in a smooth observed colour gradients in galaxy systems.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-01
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Aims. Our goal is to morphologically classify the sources identified in the images of the J-PLUS early data release (EDR) as compact (stars) or extended (galaxies) using a dedicated Bayesian classifier. Methods. J-PLUS sources exhibit two distinct populations in the r-band magnitude versus concentration plane, corresponding to compact and extended sources. We modelled the two-population distribution with a skewed Gaussian for compact objects and a log-normal function for the extended objects. The derived model and the number density prior based on J-PLUS EDR data were used to estimate the Bayesian probability that a source is a star or a galaxy. This procedure was applied pointing-by-pointing to account for varying observing conditions and sky positions. Finally, we combined the morphological information from the g, r, and i broad bands in order to improve the classification of low signal-to-noise sources. Results. The derived probabilities are used to compute the pointing-by-pointing number counts of stars and galaxies. The former increases as we approach the Milky Way disk, and the latter are similar across the probed area. The comparison with SDSS in the common regions is satisfactory up to r ~ 21, with consistent numbers of stars and galaxies, and consistent distributions in concentration and (g−i) colour spaces. Conclusions. We implement a morphological star/galaxy classifier based on probability distribution function analysis, providing meaningful probabilities for J-PLUS sources to one magnitude deeper (r ~ 21) than a classical Boolean classification. These probabilities are suited for the statistical study of 150 thousand stars and 101 thousand galaxies with 15 〈 r ≤ 21 present in the 31.7 deg2 of the J-PLUS EDR. In a future version of the classifier, we will include J-PLUS colour information from 12 photometric bands.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: Aims. We aim to use multiband imaging from the Phase-3 Verification Data of the J-PLUS survey to derive accurate photometric redshifts (photo-z) and look for potential new members in the surroundings of the nearby galaxy clusters A2589 (z = 0.0414) & A2593 (z = 0.0440), using redshift probability distribution functions (PDFs). The ultimate goal is to demonstrate the usefulness of a 12-band filter system in the study of largescale structure in the local Universe. Methods. We present an optimized pipeline for the estimation of photometric redshifts in clusters of galaxies. This pipeline includes a PSF-corrected photometry, specific photometric apertures capable of enhancing the integrated signal in the bluest filters, a careful recalibration of the photometric uncertainties and accurate upper-limit estimations for faint detections. To foresee the expected precision of our photo-z beyond the spectroscopic sample, we designed a set of simulations in which real cluster galaxies are modeled and reinjected inside the images at different signal-to-noise ratio (S/N) levels, recomputing their photometry and photo-z estimates. Results. We tested our photo-z pipeline with a sample of 296 spectroscopically confirmed cluster members with an averaged magnitude of ⟨r⟩ = 16.6 and redshift ⟨z⟩ = 0.041. The combination of seven narrow and five broadband filters with a typical photometric-depth of r ~ 21.5 provides δz/(1 + z) = 0.01 photo-z estimates. A precision of δz/(1 + z) = 0.005 is obtained for the 177 galaxies brighter than magnitude r 〈 17. Based on simulations, a δz/(1 + z) = 0.02 and δz/(1 + z) = 0.03 is expected at magnitudes ⟨r⟩ = 18 and ⟨r⟩ = 22, respectively. Complementarily, we used SDSS/DR12 data to derive photo-z estimates for the same galaxy sample. This exercise demonstrates that the wavelength-resolution of the J-PLUS data can double the precision achieved by SDSS data for galaxies with a high S/N. Based on the Bayesian membership analysis carried out in this work, we find as much as 170 new candidates across the entire field (~5 deg2). The spatial distribution of these galaxies may suggest an overlap between the systems with no evidence of a clear filamentary structure connecting the clusters. This result is supported by X-ray Rosat All-Sky Survey observations suggesting that a hypothetical filament may have low density contrast on diffuse warm gas. Conclusions. We prove that the addition of the seven narrow-band filters make the J-PLUS data deeper in terms of photo-z-depth than other surveys of a similar photometric-depth but using only five broadbands. These preliminary results show the potential of J-PLUS data to revisit membership of groups and clusters from nearby galaxies, important for the determination of luminosity and mass functions and environmental studies at the intermediate and low-mass regime.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: Context. We present a new methodology for the estimation of stellar atmospheric parameters from narrow- and intermediate-band photometry of the Javalambre Photometric Local Universe Survey (J-PLUS), and propose a method for target pre-selection of low-metallicity stars for follow-up spectroscopic studies. Photometric metallicity estimates for stars in the globular cluster M15 are determined using this method. Aims. By development of a neural-network-based photometry pipeline, we aim to produce estimates of effective temperature, Teff, and metallicity, [Fe/H], for a large subset of stars in the J-PLUS footprint. Methods. The Stellar Photometric Index Network Explorer, SPHINX, was developed to produce estimates of Teff and [Fe/H], after training on a combination of J-PLUS photometric inputs and synthetic magnitudes computed for medium-resolution (R ~ 2000) spectra of the Sloan Digital Sky Survey. This methodology was applied to J-PLUS photometry of the globular cluster M15. Results. Effective temperature estimates made with J-PLUS Early Data Release photometry exhibit low scatter, σ(Teff) = 91 K, over the temperature range 4500 〈 Teff (K) 〈 8500. For stars from the J-PLUS First Data Release with 4500 〈 Teff (K) 〈 6200, 85 ± 3% of stars known to have [Fe/H] 〈 −2.0 are recovered by SPHINX. A mean metallicity of [Fe/H] = − 2.32 ± 0.01, with a residual spread of 0.3 dex, is determined for M15 using J-PLUS photometry of 664 likely cluster members. Conclusions. We confirm the performance of SPHINX within the ranges specified, and verify its utility as a stand-alone tool for photometric estimation of effective temperature and metallicity, and for pre-selection of metal-poor spectroscopic targets.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Context. The intracluster light (ICL) is a luminous component of galaxy clusters composed of stars that are gravitationally bound to the cluster potential, but do not belong to the individual galaxies. Previous studies of the ICL have shown that its formation and evolution are intimately linked to the evolutionary stage of the cluster. Thus, the analysis of the ICL in the Coma cluster will give insights into the main processes driving the dynamics in this highly complex system. Aims. Using a recently developed technique, we measure the ICL fraction in Coma at several wavelengths, using the J-PLUS unique filter system. The combination of narrow- and broadband filters provides valuable information on the dynamical state of the cluster, the ICL stellar types, and the morphology of the diffuse light. Methods. We used the Chebyshev-Fourier intracluster light estimator (CICLE) to distinguish the ICL from the light of the galaxies, and to robustly measure the ICL fraction in seven J-PLUS filters. Results. We obtain the ICL fraction distribution of the Coma cluster at different optical wavelengths, which varies from ∼7%−21%, showing the highest values in the narrowband filters J0395, J0410, and J0430. This ICL fraction excess is a distinctive pattern that has recently been observed in dynamically active clusters (mergers), indicating a higher amount of bluer stars in the ICL than in cluster galaxies. Conclusions. The high ICL fractions and the excess in the bluer filters are indicative of a merging state. The presence of younger stars or stars with lower metallicity in the ICL suggests that the main mechanism of ICL formation for the Coma cluster is the stripping of the stars in the outskirts of infalling galaxies and possibly the disruption of dwarf galaxies during past or ongoing mergers.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: The Javalambre Photometric Local Universe Survey (J-PLUS ) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500–10 000 Å). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB ∼21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the δ z/(1 + z)∼0.005–0.03 precision level) for moderately bright (up to r ∼ 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O II]/λ3727, Hα/λ6563) up to z 〈  0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first ∼1000 deg2 of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r 〈  21 mag. With a goal of 8500 deg2 for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-01
    Description: We present a machine-learning photometric redshift (ML photo-z) analysis of the Kilo-Degree Survey Data Release 3 (KiDS DR3), using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-zs of quality comparable to, if not better than, those from the Bayesian Photometric Redshift (BPZ) code, at least up to zphot ≲ 0.9 and r ≲ 23.5. At the bright end of r ≲ 20, where very complete spectroscopic data overlapping with KiDS are available, the performance of the ML photo-zs clearly surpasses that of BPZ, currently the primary photo-z method for KiDS. Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as calibration, we furthermore study how photo-zs improve for bright sources when photometric parameters additional to magnitudes are included in the photo-z derivation, as well as when VIKING and WISE infrared (IR) bands are added. While the fiducial four-band ugri setup gives a photo-z bias 〈δz/(1 + z)〉 = −2 × 10−4 and scatter σδz/(1+z) 〈 0.022 at mean 〈z〉 = 0.23, combining magnitudes, colours, and galaxy sizes reduces the scatter by ~7% and the bias by an order of magnitude. Once the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12 μm, the scatter decreases by more than 10% over the fiducial case. Finally, using the 12 bands together with optical colours and linear sizes gives 〈δz/(1 + z)〉 〈 4 × 10−5 and σδz/(1+z) 〈 0.019. This paper also serves as a reference for two public photo-z catalogues accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of general purpose, includes all the 39 million KiDS sources with four-band ugri measurements in DR3. The second dataset, optimised for low-redshift studies such as galaxy-galaxy lensing, is limited to r ≲ 20, and provides photo-zs of much better quality than in the full-depth case thanks to incorporating optical magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...