ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-01
    Print ISSN: 0378-7753
    Electronic ISSN: 1873-2755
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: This work proposes a fast Monte Carlo method to solve differential equations utilized in model-based prognostics. The methodology is derived from the theory of stochastic calculus, and the goal of such a method is to speed up the estimation of the probability density functions describing the independent variable evolution over time. In the prognostic scenarios presented in this paper, the stochastic differential equations describe variables directly or indirectly related to the degradation of a monitored system. The method allows the estimation of the probability density functions by solving the deterministic equation and approximating the stochastic integrals using samples of the model noise. By so doing, the prognostic problem is solved without the Monte Carlo simulation based on Euler's forward method, which is typically the most time consuming task of the prediction stage. Three different prognostic scenarios are presented as proof of concept: (i) life prediction of electrolytic capacitors, (ii) remaining time to discharge of Lithium-ion batteries, and (iii) prognostic of cracked structures under fatigue loading. The paper shows how the method produces probability density functions that are statistically indistinguishable from the distributions estimated with Euler's forward Monte Carlo simulation. However, the proposed solution is orders of magnitude faster when computing the time-to-failure distribution of the monitored system. The approach may enable complex real-time prognostics and health management solutions with limited computing power.
    Keywords: Statistics and Probability
    Type: ARC-E-DAA-TN61509 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-26
    Description: The rising number of small unmanned aerial vehicles (UAVs) expected in the next decade will enable a new series of commercial, service, and military operations in low altitude airspace as well as above densely populated areas. These operations may include on-demand delivery, medical transportation services, law enforcement operations, traffic surveillance and many more. Such unprecedented scenarios create the need for robust, efficient ways to monitor the UAV state in time to guarantee safety and mitigate contingencies throughout the operations. This work proposes a generalized monitoring and prediction methodology that utilizes realtime measurements of an autonomous UAV following a series of way-points. Two different methods, based on sinusoidal acceleration profiles and high-order splines, are utilized to generate the predicted path. The monitoring approach includes dynamic trajectory re-planning in the event of unexpected detour or hovering of the UAV during flight. It can be further extended to different vehicle types, to quantify uncertainty affecting the state variables, e.g., aerodynamic and other environmental effects, and can also be implemented to prognosticate safety-critical metrics which depend on the estimated flight path and required thrust. The proposed framework is implemented on a simplified, scalable UAV modeling and control system traversing 3D trajectories. Results presented include examples of real-time predictions of the UAV trajectories during flight and a critical analysis of the proposed scenarios under uncertainty constraints.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN63006 , AIAA AVIATION Forum; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-04
    Description: The increasing interest in low-altitude unmanned aerial vehicle (UAV) operations is bringing along safety concerns. Performance of small, low-cost UAVs drastically changes with type, size and controller of the vehicle. Their reliability is lower when compared to reliability of commercial aircrafts, and the availability of on-board sensors for health and state awareness is extremely limited due to their size and propulsion capabilities. Uncertainty plays a dominant role in such a scenario, where a variety of UAVs of different size, propulsion systems, dynamic performance and reliability enters the low-altitude airspace. Unexpected failures could have dangerous consequences for both equipment and humans within that same airspace. As a result, a number of research works and methodologies are being proposed in the area of UAV dynamic modeling, health and safety monitoring, but uncertainty quantification is rarely addressed. Thus, this paper pro- poses a perspective towards uncertainty quantification for autonomous systems, giving special emphasis to a UAV health monitoring application. A formal approach to classify uncertainty is presented; it is utilized to identify the uncertainty sources in UAVs health and operations, and then map uncertainty within a predictive process. To show the application of the methodology proposed here, the design of a model-based powertrain health monitoring algorithm for small-size UAVs is used as case study. The example illustrates how the uncertainty quantification approach can help the modeling strategy, as well as the assessment of diagnostic and prognostic performance.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN68806 , Annual PHM Society Conference; Sep 21, 2019 - Sep 26, 2019; Scottsdale, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-11-01
    Description: No abstract available
    Keywords: Systems Analysis and Operations Research
    Type: ARC-E-DAA-TN73106 , Annual Conference of the Prognostics and Health; Sep 21, 2019 - Sep 26, 2019; Scottsdale, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-06
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN72593-2 , Electric Aircraft Technical Symposium; Aug 21, 2019 - Aug 23, 2019; Indianpolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-11-06
    Description: W and c Any air borne vehicle needs incorporating safety as key parameter of measure, and inclusion of autonomy raises the critical need for safety under autonomous operations. Management of faults and component degradation is key as complexity in autonomous operations grow over the period of time. Therefore, in addition to basic operational requirements, an autonomous electric vehicle should be able to make accurate estimates of its current system health and take the correct decisions to complete its mission successfully. Real-time safety and state-awareness tools are therefore essential for the vehicle to be able to reach its destination in a safe and successful manner. The need for safety assurance and health management capabilities is particularly relevant for aircraft electric propulsion systems, which are relatively new and with limited historical to learn. They are critical systems requiring high power density along with reliability, resilience, efficient management of weight, and operational costs. A model- based fault diagnosis and prognostics approach of complex critical systems can successfully accomplish the safety and state awareness goal for such electric propulsion systems, enabling autonomous decision making capability for safe and efficient operation. To identify critical components in the system a Qualitative Bayesian approach using FMECA is implemented. This requires the assessment of some quantities representing the state of the electric unmanned aerial systems (e-UAS), as well as look-ahead forecasts of such states during the entire flight, presented in form of safety metrics (SM). In-service data and performance data gathered from degraded components sup- ports diagnostic and prognostic methods for these systems, but this data can be difficult to obtain as weight and packaging restrictions reduce redundancy and instrumentation on-board the vehicle. Therefore, an model-based framework should be capable or operating with limited data. In addition to data scarcity, the variability of such complex critical systems re- quires the model-based framework to reason in the presence of uncertainty, such as sensor noise, and modeling imperfections. Quantification of errors and uncertainties in the measured states and quantities is therefore a fundamental step for a precise estimation of such SMs; un-modeled uncertainty may result in erroneous state assessment and un- reliable predictions of future states of e-UAVs. Typical, centralized model-based schemes suffer from inherent disadvantages such as computational complexity, single point of failure, and scalability issues, and therefore may fail in such a complex scenario. This paper presents a methodology for developing a system level diagnostics and prognostics approach using a Qualitative Bayesian FMECA approach along with a formal uncertainty management framework for an e-UAS. In this work we demonstrate the efficacy of the framework to predict effects of sub-system level degradation on vehicle operation incorporating uncertainty management to predict future behavior under different operating conditions.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN72593-1 , Electric Aircraft Technical Symposium; Aug 21, 2019 - Aug 23, 2019; Indianpolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-01
    Print ISSN: 0378-7753
    Electronic ISSN: 1873-2755
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...