ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2019-05-07
    Description: In order to tackle and solve the prediction problem of the lifetime of Li-ion batteries, it is essential to have awareness of the current state and health of the battery pack. To be able to accurately predict the future state of any system, one must possess knowledge of its current and future operations. Using derived models of the current and future system behavior, a model-based prognostics approach can be implemented as a solution to the prediction problem. As more and more autonomous electric vehicles progressively emerge in our daily life, a very critical challenge lies in accurate prediction of remaining useful life of the systems/subsystems. Batteries, power electronics conditioning systems, and motors are integrated to form the powertrain in electric vehicles; one of the most critical systems. In the case of electric aircrafts, computing remaining flying time is critical for safety, since an aircraft that runs out of power (battery charge) while in the air will eventually lose control leading to catastropheThis presentation covers a physics-based modeling approach implemented for case studies in capacitor and battery prognostics which are an integral part of an electrical powertrain system. The general approach of model-based prognostics will be examined as a potential solution for safety critical problems related to battery state of charge and state of health.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN64822 , IEEE Power Electronics Society Lecture; Santa Clara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-27
    Description: A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN3987 , Annual Conference of the PHM Society 2011; 25-29 Sept. 2011; Montreal/Canada; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Model-based diagnostics and prognostics rely on state estimation and uncertainty management algorithms to produce useful information for system operators and maintainers. This information enables more informed operational decisions, condition-based maintenance, and overall mission safety assurance. Typically, uncertainty is associated with vehicle state-of-health estimation and prediction results because of modeling errors, internal or external sources of noise, and sensor inaccuracy. Probabilistic uncertainty management methods including Sequential Monte Carlo simulation are commonly used to reason about state-of-health estimates and predictions in the presence of these sources of uncertainty. However, such algorithms can be computationally expensive as they require a very large number of samples to obtain a sufficiently accurate quantification of the end of life probability distribution. As a result, highly mobile autonomous systems that leverage the prognostic results for mission-level replanning are often constrained in their processing capability because of these computationally expensive simulation approaches. Therefore, in this paper, we investigate algorithmic methods for dynamically adjusting simulation time step as well as number of samples to achieve highly efficient prognostic results while maintaining results accuracy. Results obtained from simulated flight experiments of an electric unmanned aerial vehicle are presented to verify the efficacy of such algorithms.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN53265 , European Conference of the Prognostics and Health Management Society 2018; Jul 03, 2018 - Jul 06, 2018; Utrecht; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real sensors (no simulated behavior), we are attempting to assess how such algorithm behaves under realistic conditions.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN4409 , The Annual Reliability and Maintainability Symposium; Jan 23, 2012 - Jan 26, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.
    Keywords: Quality Assurance and Reliability; Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN5745 , IEEE Autotestcon; Sep 10, 2012 - Sep 13, 2012; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.
    Keywords: Systems Analysis and Operations Research; Air Transportation and Safety
    Type: ARC-E-DAA-TN26121 , 2015 Annual Conference of the Prognostics and Health Management Society; Oct 18, 2015 - Oct 24, 2015; Coronado, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: As batteries become increasingly prevalent in complex systems such as aircraft and electric cars, monitoring and predicting battery state of charge and state of health becomes critical. In order to accurately predict the remaining battery power to support system operations for informed operational decision-making, age-dependent changes in dynamics must be accounted for. Using an electrochemistry-based model, we investigate how key parameters of the battery change as aging occurs, and develop models to describe aging through these key parameters. Using these models, we demonstrate how we can (i) accurately predict end-of-discharge for aged batteries, and (ii) predict the end-of-life of a battery as a function of anticipated usage. The approach is validated through an experimental set of randomized discharge profiles.
    Keywords: Quality Assurance and Reliability; Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN28505 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN5005 , First European Conference of the Prognostics and Health; Jul 03, 2012; Dresden; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Abstract Failure of electronic devices is a concern for future electric aircrafts that will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. As a result, investigation of precursors to failure in electronics and prediction of remaining life of electronic components is of key importance. DC-DC power converters are power electronics systems employed typically as sourcing elements for avionics equipment. Current research efforts in prognostics for these power systems focuses on the identification of failure mechanisms and the development of accelerated aging methodologies and systems to accelerate the aging process of test devices, while continuously measuring key electrical and thermal parameters. Preliminary model-based prognostics algorithms have been developed making use of empirical degradation models and physics-inspired degradation model with focus on key components like electrolytic capacitors and power MOSFETs (metal-oxide-semiconductor-field-effect-transistor). This paper presents current results on the development of validation methods for prognostics algorithms of power electrolytic capacitors. Particularly, in the use of accelerated aging systems for algorithm validation. Validation of prognostics algorithms present difficulties in practice due to the lack of run-to-failure experiments in deployed systems. By using accelerated experiments, we circumvent this problem in order to define initial validation activities.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN7926 , IEEE Autotestcon; Sep 10, 2012 - Sep 12, 2012; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN5352 , AIAA @ Infotec 2012; Jun 19, 2012 - Jun 21, 2012; Garden Grove, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...