ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Edison Demonstration of Smallsat Networks (EDSN) is a technology demonstration mission that provides a proof of concept for a constellation or swarm of satellites performing coordinated activities. Networked swarms of small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earths magnetosphere, Earth-Sun interactions and the Earths geopotential. EDSN is a swarm of eight 1.5U Cubesats with crosslink, downlink and science collection capabilities developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within the NASA Space Technology Mission Directorate (STMD). This paper describes the concept of operations of the mission and planned scientific measurements. The development of the 8 satellites for EDSN necessitated the fabrication of prototypes, Flatsats and a total of 16 satellites to support the concurrent engineering and rapid development. This paper has a specific focus on the development, integration and testing of a large number of units including the lessons learned throughout the project development.
    Keywords: Spacecraft Design, Testing and Performance; Engineering (General)
    Type: ARC-E-DAA-TN17095 , AIAA/USU Conference on Small Satellites; Aug 02, 2014 - Aug 07, 2014; Logan, Utah; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or cubesats, onto launch vehicles. A standard cubesat measures about 4inches (10 cm) long, 4 inches wide,and 4 inches high, and is called a one-unit (1U) cubesat. A single NLAS provides the capability to deploy 24U of cubesats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.
    Keywords: Launch Vehicles and Launch Operations
    Type: FS #2013-04-03-ARC , 2013-04-03-ARC-NLAS , ARC-E-DAA-TN8796 , 10th Annual CubeSat Developers'' Workshop 2013; Apr 24, 2013 - Apr 26, 2013; San Luis Obispo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA FS-2015-03-09-ARC , ARC-E-DAA-TN26199
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.
    Keywords: Exobiology
    Type: ARC-E-DAA-TN661 , SSC09-IV-1 , 23rd Annual AIAA/USU Conference on Small Satellites: Connecting the Dots; Aug 09, 2010 - Aug 12, 2010; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The EDSN overview provides information on the project's objectives, particular technologies being demonstrated, an overview of the structural components of the satellites, and the concept of operations.
    Keywords: Communications and Radar; Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN26201 , Briefing materials for ORS-4 launch of NLAS; Jul 29, 2015; Kekaha, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN17046 , Small Satellite Conference; Aug 02, 2014 - Aug 07, 2014; Logan, Ut.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Edison Demonstration of Smallsat Networks (EDSN) is a swarm of eight 1.5U Cubesats developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within NASA Space Technology Mission Directorate (STMD). EDSN, scheduled for launch in late 2014, is designed to explore the use of small spacecraft networks to make synchronized, multipoint scientific measurements, and to organize and pass those data to the ground through their network. Networked swarms of these small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earth's magnetosphere, Earth-Sun interactions and the Earth's geopotential. The EDSN communications network is maintained and operated by a simple set of predefined rules operating independently on all eight spacecraft without direction from ground based systems. One spacecraft serves as a central node, requesting and collecting data from the other seven spacecraft, organizing the data and passing it to a ground station at regular intervals. The central node is rotated among the spacecraft on a regular basis, providing robustness against the failure of a single spacecraft. This paper describes the communication architecture of the EDSN network and its operation with small spacecraft of limited electrical power, computing power and communication range. Furthermore, the problems of collecting and prioritizing data through a system that has data throughput bottlenecks are addressed. Finally, future network enhancements that can be built on top of the current EDSN hardware are discussed.
    Keywords: Spacecraft Design, Testing and Performance; Communications and Radar
    Type: SSC14-WK-2 , ARC-E-DAA-TN16085 , Annual AIAA/USU Conference on Small Satellites; Aug 04, 2014 - Aug 07, 2014; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: An overview of the Nanosatellite Launch Adapter System (NLAS) is provided that contains information on NLAS' objectives and relevance, structural components and position in the launch vehicle stack, and details on its three main components.
    Keywords: Launch Vehicles and Launch Operations
    Type: ARC-E-DAA-TN26200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...