ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 7616-7618 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ion-matrix dose dependence calculations for plasma source ion implantation in planar, cylindrical, and spherical geometries are presented. It is demonstrated that in the high plasma density limit (in relation to the applied electrode potential and electrode size), the spherical and cylindrical cases approach the planar case. However, in the low relative density limit, the density dependencies diverge with the dependence vanishing for the spherical case, remaining unchanged for the planar case, and with the cylindrical case lying between the previous two. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 4685-4692 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new phenomenon has been found during the nonlinear stage of the tokamak sawtooth crash in relatively high β plasmas. The m/n=1/1 magnetic island evolution gives rise to convection of the pressure inside the q=1 radius and builds up steep pressure gradient across the island separatrix, and thereby trigger ballooning instabilities below the threshold at the equilibrium. Effects of the ballooning modes on the magnetic reconnection process during the sawtooth crash are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 455-460 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The influence of geometry on the pressure drives of nonideal magnetohydrodynamic tearing modes is presented. In order to study the effects of elongation, triangularity, and aspect ratio, three different machines are considered to provide a range of tokamak configurations: Tokamak Fusion Test Reactor (circular) [Fusion Technol. 21, 1324 (1992)], DIII-D (D-shaped) [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159], and Pegasus (extremely low aspect ratio) [Fonck et al., Bull. Am. Phys. Soc. 41, 1400 (1996)]. For large aspect ratio tokamaks, shaping does very little to influence the pressure gradient drives, while at low aspect ratios, a very strong sensitivity to the profiles is found. In particular, this sensitivity is connected to the strong dependence on the magnetic shear. This suggests that at low aspect ratio it may be possible to stabilize neoclassical tearing modes by a flattening the q profile near low order rational surfaces (e.g., q=2/1) using a combination of shaping and localized current drive, whereas at large aspect ratio it is more difficult. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4637-4645 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Numerical studies of the nonlinear evolution of magnetohydrodynamic-type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ′ stable, albeit once an island width threshold is exceeded. The plasma pressure dynamics and neoclassical tearing growth is shown to be sensitive to the choice of the ratio of the parallel to perpendicular diffusivity (χ(parallel)/χ⊥). The study is completed with a demonstration and theoretical comparison of the threshold for single helicity neoclassical magnetohydrodynamic tearing modes, which is described based on parameter scans of the local pressure gradient, the ratio of perpendicular to parallel pressure diffusivities χ⊥/χ(parallel), and the magnitude of an initial seed magnetic perturbation. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2245-2253 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly nonoverlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic-field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2308-2318 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stability properties of m≥2 tearing instabilities in tokamak plasmas are analyzed. A boundary layer theory is used to find asymptotic solutions to the ideal external kink equation, which are used to obtain a simple analytic expression for the tearing instability parameter Δ'. This calculation generalizes previous work on this topic by considering more general toroidal equilibria (however, toroidal coupling effects are ignored.) Constructions of Δ' are obtained for plasmas with finite beta and for islands that have nonzero width. A simple heuristic estimate is given for the value of the saturated island width when the instability criterion is violated. A connection is made between the calculation of the asymptotic matching parameter in the finite beta and island width case to the nonlinear analog of the Glasser effect [Phys. Fluids 18, 875 (1975)].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 4169-4182 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson [Phys. Fluids 18, 875 (1975)]. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 4292-4299 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new Δ′ shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio (ε≤0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth et al. [H. P. Furth et al., Phys. Fluids 16, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease Δ′, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-β regime before the toroidal magnetic curvature effects come into play. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 2940-2946 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effectiveness of using localized current drive or heating to suppress the formation and growth of neoclassical magnetohydrodynamic (MHD) tearing modes is addressed. The most efficient way to use an auxiliary current source is to cause current to flow in the same direction as the equilibrium bootstrap current and phase the current relative to the magnetic island such that the current is deposited on the O-point of the island. Theoretical estimates for the amount of required current to suppress the formation of a large magnetic island is of order a few percent of the equilibrium current. If the suppression is successful, the magnetic island will saturate at a width of order the radial localization width of the current source. Localized heating at the O-point of the magnetic island can also produce stabilizing effects relative to magnetic island growth. The effects of the driven current or heating can be illustrated by using a phase diagram of the island growth. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 648-657 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A computer code package has been developed to simulate the linear and nonlinear evolution of long-wavelength resistive magnetohydrodynamic (MHD) instabilities in a four-node poloidal divertor tokamak (e.g., Wisconsin Tokapole II [Nucl. Fusion 19, 1509 (1979)]). Distinguishing features of this package include the use of a full set of three-dimensional (3-D) nonlinear resistive MHD equations and the inclusion of the divertor separatrix and the plasma outside the divertor separatrix in the computational domain. The present numerical results suggest that the plasma current outside the divertor separatrix tends to linearly stabilize the resistive MHD instability dominated by the m=2, n=1 mode, and, to a lesser extent, that dominated by the m=1, n=1 mode. (Here, m and n are poloidal and toroidal mode numbers, respectively.) However, the nonlinear evolution of the m=1, n=1 dominant instability is not significantly affected by the divertor configuration; the m=1, n=1 island is shown to reconnect totally by developing a large region of magnetic stochasticity. Hence, the cause of the partial reconnection observed in Tokapole II seems to lie beyond the scope of the classical resistive MHD model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...