ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 46 (1979), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The excised, hooked bean hypocotyl was the system used to determine wheiher the ‘auxin- and gibberellin like’ effect of the lipoidal pollen extract, Brass in-complex (Br), were mediated through, or independent of, auxin and gibberellin. The morphogenetic events of hook opening and hypocotyl elongation in this system are regulated by auxin and gibberellin, respectively.Brassin complex, like IAA, elicited a book closure in (he dark and retarded its opening in red light. This effect was synergized by T1BA, IAA and the presence of the auxin-producing organs, the epicotyl and cotyledons. Br-elicited hook closure was inhibited by the antiauxin. PCIB.Both GA3 and Br totally reversed the light inhibition of hypocotyl elongation. The GA3-effect, but nol the Br elicited elongation, was overcome by Ancymidol. Hypocotyl elongation was partially inhibited by TIBA and PCIB. suggesting a possible auxin involvement also in this effect of Br.Br may elicit its growth responses through an effect on endogenous auxin levels, In this way it is different from other lipoidat growth regulators, such as the oleanimins which require the presence of exogenous growth regulators for activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 41 (1977), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Galactose enhances the production of ethylene gas, and ethylene gas inhibits the movement of IAA in plant tissues. If galactose enhances ethylene production and ethylene inhibits auxin movement, then galactose should inhibit auxin movement. The above hypothesis was examined by observing the effects of d-galactose, d-inannose, d-arabinose, d-glucose, and d xylose on the uptake, presumed decarboxylation, efflux, velocity and metabolism of labeled indole-3-aectic acid in hypocotyl segments of Phaseolus vulgaris L. cv. Pinto. Galactose inhibited, arabinose and glucose enhanced, and mannose and xylose had no effect on partitioning of auxin between tissue and receptor. The reduction of auxin efflux by galactose was related to an increased presumed decarboxylation, reduced uptake and slower velocity of applied auxin. The relationship between galactose-induced growth effects, ethylene production, and auxin migration are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 37 (1976), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Galactose has long been known to inhibit growth in certain plant systems and more recently to promote abscission. These same systems are similarly affected by ethylene. The mung bean (Phaseolus aureus Roxb.) hypocotyl system was employed to ascertain whether the inhibitory effects of galactose might be regulated through ethylene. Galactose alone (at 10 and 100 mM) of the many carbohydrates tested elicited high rates of ethylene evolution (1.5–4.0 nl/g fresh weight x h) as determined by gas chroma-tography. Hook opening, pigment formation, and hypocotyl elongation were inhibited by this resultant ethylene. Galactose and auxin were found to act synergistically with respect to ethylene induction. Use of an auxin antagonist and auxin transport inhibitor revealed that galactose-induced ethylene formation is auxin dependent. Time course studies indicate that this effect may be auxin-sparing. Methionine appears to be the substrate of galactose-induced ethylene. since a methionine antagonist [L-2-amino-4-(2′-amino ethoxy)-trans-3-butenoic acid] abolished the induction. Potential interrelationships between galactose and ethylene synthesis are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...