ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-12-07
    Description: The striatum, which is the major component of the basal ganglia in the brain, is regulated in part by dopaminergic input from the substantia nigra. Severe movement disorders result from the loss of striatal dopamine in patients with Parkinson's disease. Rats with lesions of the nigrostriatal dopamine pathway caused by 6-hydroxydopamine (6-OHDA) serve as a model for Parkinson's disease and show alterations in gene expression in the two major output systems of the striatum to the globus pallidus and substantia nigra. Striatopallidal neurons show a 6-OHDA-induced elevation in their specific expression of messenger RNAs (mRNAs) encoding the D2 dopamine receptor and enkephalin, which is reversed by subsequent continuous treatment with the D2 agonist quinpirole. Conversely, striatonigral neurons show a 6-OHDA-induced reduction in their specific expression of mRNAs encoding the D1 dopamine receptor and substance P, which is reversed by subsequent daily injections of the D1 agonist SKF-38393. This treatment also increases dynorphin mRNA in striatonigral neurons. Thus, the differential effects of dopamine on striatonigral and striatopallidal neurons are mediated by their specific expression of D1 and D2 dopamine receptor subtypes, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerfen, C R -- Engber, T M -- Mahan, L C -- Susel, Z -- Chase, T N -- Monsma, F J Jr -- Sibley, D R -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1429-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2147780" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; Animals ; Cerebral Cortex/physiology ; Corpus Striatum/drug effects/*metabolism ; Ergolines/pharmacology ; Gene Expression Regulation ; Globus Pallidus/drug effects/*metabolism ; Hydroxydopamines/pharmacology ; Models, Neurological ; Neurons/drug effects/*metabolism ; Oligonucleotide Probes ; Oxidopamine ; Quinpirole ; RNA, Messenger/drug effects/*genetics ; Rats ; Receptors, Dopamine/*genetics ; Receptors, Dopamine D1 ; Receptors, Dopamine D2 ; Substantia Nigra/drug effects/*metabolism ; Thalamus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-10-20
    Description: The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerfen, C R -- New York, N.Y. -- Science. 1989 Oct 20;246(4928):385-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2799392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Corpus Striatum/*anatomy & histology ; Immunohistochemistry ; Phytohemagglutinins ; Rats ; Rats, Inbred Strains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-04
    Description: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oh, Seung Wook -- Harris, Julie A -- Ng, Lydia -- Winslow, Brent -- Cain, Nicholas -- Mihalas, Stefan -- Wang, Quanxin -- Lau, Chris -- Kuan, Leonard -- Henry, Alex M -- Mortrud, Marty T -- Ouellette, Benjamin -- Nguyen, Thuc Nghi -- Sorensen, Staci A -- Slaughterbeck, Clifford R -- Wakeman, Wayne -- Li, Yang -- Feng, David -- Ho, Anh -- Nicholas, Eric -- Hirokawa, Karla E -- Bohn, Phillip -- Joines, Kevin M -- Peng, Hanchuan -- Hawrylycz, Michael J -- Phillips, John W -- Hohmann, John G -- Wohnoutka, Paul -- Gerfen, Charles R -- Koch, Christof -- Bernard, Amy -- Dang, Chinh -- Jones, Allan R -- Zeng, Hongkui -- England -- Nature. 2014 Apr 10;508(7495):207-14. doi: 10.1038/nature13186. Epub 2014 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Allen Institute for Brain Science, Seattle, Washington 98103, USA [2]. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA. ; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24695228" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atlases as Topic ; Axons/physiology ; Brain/*anatomy & histology/*cytology ; Cerebral Cortex/cytology ; *Connectome ; Corpus Striatum/cytology ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neuroanatomical Tract-Tracing Techniques ; Thalamus/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-06
    Description: The basal ganglia are phylogenetically conserved subcortical nuclei necessary for coordinated motor action and reward learning. Current models postulate that the basal ganglia modulate cerebral cortex indirectly via an inhibitory output to thalamus, bidirectionally controlled by direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs, respectively). The basal ganglia thalamic output sculpts cortical activity by interacting with signals from sensory and motor systems. Here we describe a direct projection from the globus pallidus externus (GP), a central nucleus of the basal ganglia, to frontal regions of the cerebral cortex (FC). Two cell types make up the GP-FC projection, distinguished by their electrophysiological properties, cortical projections and expression of choline acetyltransferase (ChAT), a synthetic enzyme for the neurotransmitter acetylcholine (ACh). Despite these differences, ChAT(+) cells, which have been historically identified as an extension of the nucleus basalis, as well as ChAT(-) cells, release the inhibitory neurotransmitter GABA (gamma-aminobutyric acid) and are inhibited by iSPNs and dSPNs of dorsal striatum. Thus, GP-FC cells comprise a direct GABAergic/cholinergic projection under the control of striatum that activates frontal cortex in vivo. Furthermore, iSPN inhibition of GP-FC cells is sensitive to dopamine 2 receptor signalling, revealing a pathway by which drugs that target dopamine receptors for the treatment of neuropsychiatric disorders can act in the basal ganglia to modulate frontal cortices.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saunders, Arpiar -- Oldenburg, Ian A -- Berezovskii, Vladimir K -- Johnson, Caroline A -- Kingery, Nathan D -- Elliott, Hunter L -- Xie, Tiao -- Gerfen, Charles R -- Sabatini, Bernardo L -- F31 MH093026/MH/NIMH NIH HHS/ -- F31 NS074842/NS/NINDS NIH HHS/ -- F31-MH093026-01A1/MH/NIMH NIH HHS/ -- NS072030/NS/NINDS NIH HHS/ -- P30 EY002520/EY/NEI NIH HHS/ -- P30 EY012196/EY/NEI NIH HHS/ -- P30 EY12196/EY/NEI NIH HHS/ -- P30 NS072030/NS/NINDS NIH HHS/ -- R01 NS046579/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 May 7;521(7550):85-9. doi: 10.1038/nature14179. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Neurobiology Imaging Facility, Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Image and Data Analysis Core, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA. ; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739505" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-04
    Description: Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex in primates) contains equal proportions of intermingled neurons predicting ipsi- or contralateral movements, yet unilateral inactivation of this cortical region during movement planning disrupts contralateral movements. Using cell-type-specific electrophysiology, cellular imaging and optogenetic perturbation, we show that layer 5 neurons projecting within the cortex have unbiased laterality. Activity with a contralateral population bias arises specifically in layer 5 neurons projecting to the brainstem, and only late during movement planning. These results reveal the transformation of distributed preparatory activity into movement commands within hierarchically organized cortical circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Nuo -- Chen, Tsai-Wen -- Guo, Zengcai V -- Gerfen, Charles R -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 5;519(7541):51-6. doi: 10.1038/nature14178. Epub 2015 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA. ; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; Brain Stem/cytology/physiology ; Electrophysiology ; Mice ; Motor Cortex/cytology/*physiology ; Movement/*physiology ; Neural Pathways/cytology/*physiology ; Pyramidal Cells/cytology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 15 (1992), S. 285-320 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-09-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 1985-12-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...