ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 125-128 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Marine records of sediment oxygen isotope compositions show that the Earth's climate has gone through a succession of glacial and interglacial periods during the past million years. But the interpretation of the oxygen isotope records is complicated because both isotope storage in ice ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1996), S. 523-533 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. This study focuses on the differences between the present-day climate and the climate of the last glacial maximum (LGM) of 18 000 y BP using a zonally averaged energy balance climate model. The ocean is represented by a 2-D model with prescribed overturning pattern in which the overturning velocities can be adjusted freely. We discuss what influence the use of ice-age conditions (i.e. enhanced land-ice cover, reduced CO2-concentration and reduced oceanic overturning rate) has on the differences between ice-age and present-day climate. When compared to LGM sea-surface temperatures derived from proxy data, the model is able to simulate fairly well the important features of the meridional distribution of these temperature differences. Applying reduced ocean overturning rates during the LGM significantly decreases poleward heat transport in the oceans, thereby allowing for additional cooling of the polar regions and less cooling of the equatorial region. As a result, the agreement with CLIMAP proxy temperature differences increases, especially in the equatorial region. This mechanism can explain the slight differences in the CLIMAP proxy equatorial surface temperatures between the LGM and the present-day climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 12 (1996), S. 523-533 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This study focuses on the differences between the present-day climate and the climate of the last glacial maximum (LGM) of 18 000 y BP using a zonally averaged energy balance climate model. The ocean is represented by a 2-D model with prescribed overturning pattern in which the overturning velocities can be adjusted freely. We discuss what influence the use of ice-age conditions (i.e. enhanced land-ice cover, reduced CO2-concentration and reduced oceanic overturning rate) has on the differences between ice-age and present-day climate. When compared to LGM sea-surface temperatures derived from proxy data, the model is able to simulate fairly well the important features of the meridional distribution of these temperature differences. Applying reduced ocean overturning rates during the LGM significantly decreases poleward heat transport in the oceans, thereby allowing for additional cooling of the polar regions and less cooling of the equatorial region. As a result, the agreement with CLIMAP proxy temperature differences increases, especially in the equatorial region. This mechanism can explain the slight differences in the CLIMAP proxy equatorial surface temperatures between the LGM and the present-day climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 95 (2000), S. 343-368 
    ISSN: 1573-1472
    Keywords: Drifting snow ; Suspended snow ; Sublimation ; Stratified flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Snowdrift is one of the manymanifestations of two-phase flow, in which theinteraction between suspended particles and theambient fluid brings about some interesting features.Specifically, the drag required to keep particles insuspension against the downward gravitational pullrequires expenditure of turbulent kinetic energy(TKE). Other effects include the increased density of theair-snow mixture and the stable thermal stratificationcaused by the snowdrift sublimation-induced cooling.An atmospheric surface-layer model that includes snowdriftsuspension is described that includes the effects ofupward diffusion, gravitational settling andsublimation of snow particles in 48 size classes, theeffects of snowdrift sublimation on the heat andmoisture budget of the surface layer and the dampingof turbulence in the presence of suspended particles. Thewell-known E-ε closure model is applied toevaluate the eddy exchange coefficient, with a newterm representing buoyancy reduction induced by thestably stratified suspended particle profile includedin the prognostic equation for TKE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 95 (2000), S. 369-395 
    ISSN: 1573-1472
    Keywords: Drifting snow ; Suspended snow ; Sublimation ; Stratified flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An atmospheric surface-layer model is used to investigate the interactionbetween suspended snow particles and the near-surface flow. Themodel incorporates the effects of upward diffusion, gravitational settling and sublimation of snow particles in 48 size classes, the effects of snowdrift sublimation on the heat and moisture budget of the surface layer, and the buoyancy destruction of turbulent kinetic energy (TKE) caused by the presence of suspended particles. A new term in the E-ε closure model representing the buoyancy destruction due to suspended particles is included in the prognostic equation for TKE. Generally, model results indicate that the presence of suspended particles causes significant decreases in TKE, the dissipation rate, turbulent length scales and eddy exchange coefficients (up to 40%). It is found that the reduction in the eddy exchangecoefficients is due mainly to reductions in turbulent length scales. Theassociated particle Richardson number peaks near the saltation-suspensioninterface, but at higher levels in the surface layer the particle-induced buoyancy can also significantly affect the flow. A detailed analysis of the various snowdrift quantities, the TKE budget and the particle buoyancy effects on the flow is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 97 (2000), S. 109-135 
    ISSN: 1573-1472
    Keywords: Blowing snow ; Diffusion coefficient ; Intercomparison ; Sublimation ; Suspension
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Four one-dimensional, time-dependent blowing snow models areintercompared. These include three spectral models, PIEKTUK-T,WINDBLAST, SNOWSTORM, and the bulk version of PIEKTUK-T,PIEKTUK-B. Although the four models are based on common physicalconcepts, they have been developed by different research groups. Thestructure of the models, numerical methods, meteorological field treatmentand the parameterization schemes may be different. Under an agreed standardcondition, the four models generally give similar results for the thermodynamic effects of blowing snow sublimation on the atmospheric boundary layer, including an increase of relative humidity and a decrease of the ambient temperature due to blowing snow sublimation. Relative humidity predicted by SNOWSTORM is lower than the predictions of the other models, which leads to a larger sublimation rate in SNOWSTORM. All four models demonstrate that sublimation rates in a column of blowing snow have a single maximum in time, illustrating self-limitation of the sublimation process of blowing snow. However, estimation of the eddy diffusioncoefficient for momentum (Km), and thereby the diffusion coefficients for moisture (Kw) and for heat (Kh), has a significant influence on the process. Sensitivitytests with PIEKTUK-T show that the sublimation rate can be approximately constant with time after an initial phase, if Km is a linear function with height. In order to match the model results with blowing snow observations, some parameters in the standard run, such as settling velocity of blowing snow particles in these models, may need to be changed to more practical values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 72 (1995), S. 411-438 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The surface wind field is an important factor controlling the surface mass balance of Antarctica. This paper focuses on the observed atmospheric circulation during summer of an Antarctic blue ice area in Queen Maud Land. Blue ice areas are characterised by a negative surface mass balance and henceforth provide an interesting location to study the influence of meteorological processes on large local mass balance gradients. During lapse conditions, synoptic forcing determines the surface-layer flow. No significant horizontal temperature gradient with coastal stations could be detected along isobaric surfaces, indicating weak or absent thermal wind. Observations performed at the coastal stations Halley and Georg von Neumayer show the pronounced effects of synoptic forcing. The surface winds in the valley of the blue ice area could be divided into two distinct flow patterns, occurring with about equal frequency during the experiment. Flow type I is associated with cyclonic activity at the coast, resulting in strong easterly winds, precipitation and drifting snow. Flow characteristics inside and outside of the valley are similar during these conditions. Flow type II occurs when a high pressure system develops in the Weddell Sea, weakening the free atmosphere geostrophic winds. A local circulation is able to develop inside the valley of the blue ice area during these tranquil conditions. The transition from flow type II to flow type I is associated with front-like phenomena inside the valley. Some simple theoretical considerations show that surface-layer stability and the upper air geostrophic wind determine the surface flow direction in the valley. Finally, the influence of the observed circulation on the energy and mass balance of the blue ice area is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 74 (1995), S. 89-111 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Vertical profiles of wind speed, temperature and humidity were used to estimate the roughness lengths for momentum (z 0), heat (z H ) and moisture (z Q) over smooth ice and snow surfaces. The profile-measurements were performed in the vicinity of a blue ice field in Queen Maud Land, East Antarctica. The values ofz 0 over ice (∼3·10−6 m) seem to be the smallest ever obtained over permanent, natural surfaces. The settling of snow on the ice and the loss of momentum at saltating snow particles serve as momentum dissipating processes during snow-drift events, expressed as a strong dependence ofz 0 on u#. The scalar roughness lengths and surface temperature can be evaluated from the temperature and humidity profile measurements if the ratioz H /z Q is specified. This new method circumvents the difficult measurement of surface temperature. The scalar roughness lengths seem to be approximately equal toz0 for a large range of low roughness Reynolds numbers, despite the frequent occurrence of drifting snow. Possible reasons for this agreement with theory of non-saltating flow are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-04
    Description: The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (e.g. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, any change in sea ice cover will have a strong impact on the climate response through the radiative surface albedo feedback. Since sea ice area is projected to shrink considerably, this feedback will likely vary considerably in time. Feedbacks are usually evaluated as being constant in time, even though feedbacks and climate sensitivity depend on the climate state. Here we assess and quantify these temporal changes in the strength of the surface albedo feedback in response to global warming. Analyses unequivocally demonstrate that the strength of the surface albedo feedback exhibits considerable temporal variations. Specifically, the strength of the surface albedo feedback in the Arctic, evaluated for simulations of the future climate (CMIP5/RCP8.5) using a kernel method, shows a distinct peak around the year 2100. This maximum is found to be linked to increased seasonality in sea ice cover when sea ice recedes, in which sea ice retreat during spring turns out to be the dominant factor affecting the strength of the annual surface albedo feedback in the Arctic. Hence, changes in sea-ice seasonality and the associated fluctuations in surface albedo feedback strength will exert a time-varying effect on Arctic amplification during the projected warming over the next century.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-01
    Description: The Arctic summer sea ice has diminished fast in recent decades. A strong year-to-year variability on top of this trend indicates that sea ice is sensitive to short-term climate fluctuations. Previous studies show that anomalous atmospheric conditions over the Arctic during spring and summer affect ice melt and the September sea ice extent (SIE). These conditions are characterized by clouds, humidity, and heat anomalies that all affect downwelling shortwave (SWD) and longwave (LWD) radiation to the surface. In general, positive LWD anomalies are associated with cloudy and humid conditions, whereas positive anomalies of SWD appear under clear-sky conditions. Here the effect of realistic anomalies of LWD and SWD on summer sea ice is investigated by performing experiments with the Community Earth System Model. The SWD and LWD anomalies are studied separately and in combination for different seasons. It is found that positive LWD anomalies in spring and early summer have significant impact on the September SIE, whereas winter anomalies show only little effect. Positive anomalies in spring and early summer initiate an earlier melt onset, hereby triggering several feedback mechanisms that amplify melt during the succeeding months. Realistic positive SWD anomalies appear only important if they occur after the melt has started and the albedo is significantly reduced relative to winter conditions. Simulations where both positive LWD and negative SWD anomalies are implemented simultaneously, mimicking cloudy conditions, reveal that clouds during spring have a significant impact on summer sea ice while summer clouds have almost no effect.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...