ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The fractional absorption of photosynthetically active radiation (fPAR) is frequently a key variable in models describing terrestrial ecosystem–atmosphere interactions, carbon uptake, growth and biogeochemistry. We present a novel approach to the estimation of the fraction of incident photosynthetically active radiation absorbed by the photosynthetic components of a plant canopy (fChl). The method uses micrometeorological measurements of CO2 flux and incident radiation to estimate light response parameters from which canopy structure is deduced. Data from two Ameriflux sites in Oklahoma, a tallgrass prairie site and a wheat site, are used to derive 7-day moving average estimates of fChl during three years (1997–1999). The inverse estimates are compared to long-term field measurements of PAR absorption. Good correlations are obtained when the field-measured fPAR is scaled by an estimate of the green fraction of total leaf area, although the inverse technique tends to be lower in value than the field measurements.The inverse estimates of fChl using CO2 flux measurements are different from measurements of fPAR that might be made by other, more direct, techniques. However, because the inverse estimates are based on observed canopy CO2 uptake, they might be considered more biologically relevant than direct measurements that are affected by non-physiologically active components of the canopy. With the increasing number of eddy covariance sites around the world the technique provides the opportunity to examine seasonal and inter-annual variation in canopy structure and light harvesting capacity at individual sites. Furthermore, the inverse fChl provide a new source of data for development and testing of fPAR retrieval using remote sensing. New remote sensing algorithms, or adjustments to existing algorithms, might thus become better conditioned to ‘biologically significant’ light absorption than currently possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Determining the spatial and temporal diversity of photosynthetic processes in forest canopies presents a challenge to the evaluation of biological feedbacks needed for improvement of carbon and climate models. Limited access with portable instrumentation, especially in the outer canopy, makes remote sensing of these processes a priority in experimental ecosystem and climate change research. Here, we describe the application of a new, active, chlorophyll fluorescence measurement system for remote sensing of light use efficiency, based on analysis of laser-induced fluorescence transients (LIFT). We used mature stands of Populus grown at ambient (380 ppm) and elevated CO2 (1220 ppm) in the enclosed agriforests of the Biosphere 2 Laboratory (B2L) to compare parameters of photosynthetic efficiency, photosynthetic electron transport, and dissipation of excess light measured by LIFT and by standard on-the-leaf saturating flash methods using a commercially available pulse-modulated chlorophyll fluorescence instrument (Mini-PAM). We also used LIFT to observe the diel courses of these parameters in leaves of two tropical forest dominants, Inga and Pterocarpus, growing in the enclosed model tropical forest of B2L. Midcanopy leaves of both trees showed the expected relationships among chlorophyll fluorescence-derived photosynthetic parameters in response to sun exposure, but, unusually, both displayed an afternoon increase in nonphotochemical quenching in the shade, which was ascribed to reversible inhibition of photosynthesis at high leaf temperatures in the enclosed canopy. Inga generally showed higher rates of photosynthetic electron transport, but greater afternoon reduction in photosynthetic efficiency. The potential for estimation of the contribution of outer canopy photosynthesis to forest CO2 assimilation, and assessment of its response to environmental stress using remote sensing devices such as LIFT, is briefly discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: In this paper we describe measurements and modeling of 18O in CO2 and H2O pools and fluxes at a tallgrass prairie site in Oklahoma. We present measurements of the δ18O value of leaf water, depth-resolved soil water, atmospheric water vapor, and Keeling plot δ18O intercepts for net soil-surface CO2 and ecosystem CO2 and H2O fluxes during three periods of the 2000 growing season. Daytime discrimination against C18OO, as calculated from measured above-canopy CO2 and δ18O gradients, is also presented. To interpret the isotope measurements, we applied an integrated land-surface and isotope model (ISOLSM) that simulates ecosystem H218O and C18OO stocks and fluxes. ISOLSM accurately predicted the measured isotopic composition of ecosystem water pools and the δ18O value of net ecosystem CO2 and H2O fluxes. Simulations indicate that incomplete equilibration between CO2 and H2O within C4 plant leaves can have a substantial impact on ecosystem discrimination. Diurnal variations in the δ18O value of above-canopy vapor had a small impact on the predicted δ18O value of ecosystem water pools, although sustained differences had a large impact. Diurnal variations in the δ18O value of above-canopy CO2 substantially affected the predicted ecosystem discrimination. Leaves dominate the ecosystem 18O-isoflux in CO2 during the growing season, while the soil contribution is relatively small and less variable. However, interpreting daytime measurements of ecosystem C18OO fluxes requires accurate predictions of both soil and leaf 18O-isofluxes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 65 (1985), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 6 (1983), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Key words Photosynthesis ; C4 ; Climate change ; CO2 ; Grassland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) – regardless of the photosynthetic superiority of the C4 pathway – in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is 〈25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Photosynthesis ; Osmotic stress ; Temperature Stress ; Algae ; Intertidal region ; Porphyra perforata ; Rhodoglossum affine ; Gelidium coulteri ; Smithora naiadum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This study examines possible relationships between stress tolerance by marine algae and distributions of these species. The ability to recover photosynthetic activity following dehydration or temperature treatments was the assay used to evaluate stress tolerance, and Porphyra perforata, Rhodoglossum affine, Gelidium coulteri, and Smithora naiadum differed in thresholds of tolerance, even though plants were collected from low tidal sites. Limits of dehydration tolerance were well correlated with limits of tidal distribution for these species. Additionally, other high tidal species tolerated severe dehydration while subtidal and low tidal species were sensitive to dehydration. High tidal individuals of P. perforata were also more tolerant of dehydration than were low tidal thalli of P. perforata. Limits of high or low temperature tolerance were not well correlated with tidal elevation for any groups of algae studied. However, cold-tolerant species had more northerly extensions, and warm-tolerant species had more southerly distributions. Thus, differential tolerance to temperature extremes may be an important influence for latitudinal ranges of species. By comparing the experimentally determined thresholds of stress with distributions of species, we test the role of stress in influencing photosynthesis and ultimately distributions of marine algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Key words Atmospheric CO2 ; Canopy photosynthesis ; Coastal desert ; Net ecosystem exchange ; Tropical rainforest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ecosystem-level carbon uptake and respiration were measured under different CO2 concentrations in the tropical rainforest and the coastal desert of Biosphere 2, a large enclosed facility. When the mesocosms were sealed and subjected to step-wise changes in atmospheric CO2 between daily means of 450 and 900 μmol mol−1, net ecosystem exchange (NEE) of CO2 was derived using the diurnal changes in atmospheric CO2 concentrations. The step-wise CO2 treatment was effectively replicated as indicated by the high repeatability of NEE measurements under similar CO2 concentrations over a 12-week period. In the rainforest mesocosm, daily NEE was increased significantly by the high CO2 treatments because of much higher enhancement of canopy CO2 assimilation relative to the increase in the nighttime ecosystem respiration under high CO2. Furthermore, the response of daytime NEE to increasing atmospheric CO2 in this mesocosm was not linear, with a saturation concentration of 750 μmol mol−1. In the desert mesocosm, a combination of a reduction in ecosystem respiration and a small increase in canopy CO2 assimilation in the high CO2 treatments also enhanced daily NEE. Although soil respiration was not affected by the short-term change in atmospheric CO2 in either mesocosm, plant dark respiration was increased significantly by the high CO2 treatments in the rainforest mesocosm while the opposite was found in the desert mesocosm. The high CO2 treatments increased the ecosystem light compensation points in both mesocosms. High CO2 significantly increased ecosystem radiation use efficiency in the rainforest mesocosm, but had a much smaller effect in the desert mesocosm. The desert mesocosm showed much lower absolute response in NEE to atmospheric CO2 than the rainforest mesocosm, probably because of the presence of C4 plants. This study illustrates the importance of large-scale experimental research in the study of complex global change issues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Phaseolus (photosynthesis) ; Photosynthesis (electron-transport regulation) ; Photosystem II
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulation of photosystem II (PSII) by light-, CO2-, and O2-dependent changes in the capacity for carbon metabolism was studied. Estimates of the rate of electron transport through PSII were made from gas-exchange data and from measurements of chlorophyll fluorescence. At subsaturating photon-flux density (PFD), the rate of electron transport was independent of O2 and CO2. Feedback on electron transport was observed under two conditions. At saturating PFD and low partial pressure of CO2, p(CO2), the rate of electron transport increased with p(CO2). However, at high p(CO2), switching from normal to low p(O2) did not affect the net rate of photosynthetic CO2 assimilation but the rate of electron-transport decreased by an amount related to the change in the rate of photorespiration. We interpret these effects as 1) regulation of ribulose-1,5-bisphosphatecarboxylase (RuBPCase, EC 4.1.1.39) activity to match the rate of electron transport at limiting PFD, 2) regulation of electron-transport rate to match the rate of RuBPCase at low p(CO2), and 3) regulation of the electron-transport rate to match the capacity for starch and sucrose synthesis at high p(CO2) and PFD. These studies provide evidence that PSII is regulated so that the capacity for electron transport is matched to the capacity for other processes required by photosynthesis, such as ribulose-bisphosphate carboxylation and starch and sucrose synthesis. We show that at least two mechanisms contribute to the regulation of PSII activity and that the relative engagement of these mechanisms varies with time following a step change in the capacity for ribulose-bisphosphate carboxylation and starch and sucrose synthesis. Finally, we take advantage of the relatively slow activation of deactivated RuBPCase in vivo to show that the activation level of this enzyme can limit the rate of electron transport as evidenced by increased feedback on PSII following a step change in p(CO2). As RuBPCase as activated, the feedback on PSII declined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...