ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 21 (2005), S. 319-346 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Bacteria communicate with one another using chemical signal molecules. As in higher organisms, the information supplied by these molecules is critical for synchronizing the activities of large groups of cells. In bacteria, chemical communication involves producing, releasing, detecting, and responding to small hormone-like molecules termed autoinducers . This process, termed quorum sensing, allows bacteria to monitor the environment for other bacteria and to alter behavior on a population-wide scale in response to changes in the number and/or species present in a community. Most quorum-sensing-controlled processes are unproductive when undertaken by an individual bacterium acting alone but become beneficial when carried out simultaneously by a large number of cells. Thus, quorum sensing confuses the distinction between prokaryotes and eukaryotes because it enables bacteria to act as multicellular organisms. This review focuses on the architectures of bacterial chemical communication networks; how chemical information is integrated, processed, and transduced to control gene expression; how intra- and interspecies cell-cell communication is accomplished; and the intriguing possibility of prokaryote-eukaryote cross-communication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of an extracellular signal molecule (autoinducer) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode functions necessary for the synthesis of, and response to, a signal molecule. Sequence analysis of the region encoding these functions revealed three open reading frames, two (luxL and luxM) that are required for production of an autoinducer substance and a third (luxN) that is required for response to this signal substance. The LuxL and LuxM proteins are not similar in amino acid sequence to other proteins in the database, but the LuxN protein contains regions of sequence resembling both the histidine protein kinase and the response regulator domains of the family of two–component, signal transduction proteins. The phenotypes of mutants with luxL, luxM and luxN defects indicated that an additional signal–response system controlling density-dependent expression of luminescence remains to be identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In a process called quorum sensing, bacteria communicate with one another using secreted chemical signalling molecules termed autoinducers. A novel autoinducer called AI-2, originally discovered in the quorum-sensing bacterium Vibrio harveyi, is made by many species of Gram-negative and Gram-positive bacteria. In every case, production of AI-2 is dependent on the LuxS autoinducer synthase. The genes regulated by AI-2 in most of these luxS-containing species of bacteria are not known. Here, we describe the identification and characterization of AI-2-regulated genes in Salmonella typhimurium. We find that LuxS and AI-2 regulate the expression of a previously unidentified operon encoding an ATP binding cassette (ABC)-type transporter. We have named this operon the lsr (luxS regulated) operon. The Lsr transporter has homology to the ribose transporter of Escherichia coli and S. typhimurium. A gene encoding a DNA-binding protein that is located adjacent to the Lsr transporter structural operon is required to link AI-2 detection to operon expression. This gene, which we have named lsrR, encodes a protein that represses lsr operon expression in the absence of AI-2. Mutations in the lsr operon render S. typhimurium unable to eliminate AI-2 from the extracellular environment, suggesting that the role of the Lsr apparatus is to transport AI-2 into the cells. It is intriguing that an operon regulated by AI-2 encodes functions resembling the ribose transporter, given recent findings that AI-2 is derived from the ribosyl moiety of S-ribosylhomocysteine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Vibrio cholerae, the causative agent of the human disease cholera, uses cell-to-cell communication to control pathogenicity and biofilm formation. This process, known as quorum sensing, relies on the secretion and detection of signalling molecules called autoinducers. At low cell density V. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 437 (2005), S. 750-753 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Bacteria communicate by means of chemical signal molecules called autoinducers. This process, called quorum sensing, allows bacteria to count the members in the community and to alter gene expression synchronously across the population. Quorum-sensing-controlled processes are often crucial for ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Microbiology 55 (2001), S. 165-199 
    ISSN: 0066-4227
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community. Presumably, this process bestows upon bacteria some of the qualities of higher organisms. The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 50 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Multiple quorum-sensing circuits function in parallel to control virulence and biofilm formation in Vibrio cholerae. In contrast to other bacterial pathogens that induce virulence factor production and/or biofilm formation at high cell density in the presence of quorum-sensing autoinducers, V. cholerae represses these behaviours at high cell density. Consistent with this, we show here that V. cholerae strains ‘locked’ in the regulatory state mimicking low cell density are enhanced for biofilm production whereas mutants ‘locked’ in the regulatory state mimicking high cell density are incapable of producing biofilms. The quorum-sensing cascade we have identified in V. cholerae regulates the transcription of genes involved in exopolysaccharide production (EPS), and variants that produce EPS and form biofilms arise at high frequency from non-EPS, non-biofilm producing strains. Our data show that spontaneous mutation of the transcriptional regulator hapR is responsible for this effect. Several toxigenic strains of V. cholerae possess a naturally occurring frameshift mutation in hapR. Thus, the distinct environments occupied by this aquatic pathogen presumably include niches where cell-cell communication is crucial, as well as ones where loss of quorum sensing via hapR mutation confers a selective advantage. Bacterial biofilms could represent a complex habitat where such differentiation occurs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 58 (2005), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacteria communicate using a process called quorum sensing which involves production, secretion and detection of signalling molecules called autoinducers. Quorum sensing allows populations of bacteria to simultaneously regulate gene expression in response to changes in cell density. The human pathogen, Vibrio cholerae, uses a quorum-sensing circuit composed of parallel systems that transduce information through four redundant regulatory small RNAs (sRNAs) called quorum regulatory RNAs (Qrr) to control the expression of numerous genes, most notably those required for virulence. We show that the VarS/VarA two-component sensory system comprises an additional regulatory input controlling quorum-sensing-dependent gene expression in V. cholerae. VarS/VarA controls transcription of three previously unidentified small regulatory RNAs (sRNAs) that are similar to the sRNAs CsrB and CsrC of Escherichia coli. The three V. cholerae sRNAs, which we name CsrB, CsrC and CsrD, act redundantly to control the activity of the global regulatory protein, CsrA. The VarS/VarA-CsrA/BCD system converges with the V. cholerae quorum-sensing systems to regulate the expression of the Qrr sRNAs, and thus, the entire quorum-sensing regulon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd.
    Molecular microbiology 50 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The LuxS-dependent autoinducer AI-2 is proposed to function in interspecies cell–cell communication in bacteria. In Salmonella typhimurium, AI-2 is produced and released during exponential growth and is subsequently imported into the bacteria via the Lsr (luxS regulated) ATP binding cassette (ABC) transporter. AI-2 induces transcription of the lsrACDBFGE operon, the first four genes of which encode the Lsr transport apparatus. In this report, we identify and characterize LsrK, a new protein that is required for the regulation of the lsr operon and the AI-2 uptake process. LsrK is a kinase that phosphorylates AI-2 upon entry into the cell. Our data indicate that phosphorylation of AI-2 results in its sequestration in the cytoplasm. We suggest that phospho-AI-2 is the inducer responsible for inactivation of LsrR, the repressor of the lsr operon. We also show that two previously uncharacterized members of the lsr operon, LsrF and LsrG, are necessary for the further processing of phospho-AI-2. Transport and processing of AI-2 could be required for removing the quorum-sensing signal, conveying the signal to an internal detector and/or scavenging boron.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 41 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, ‘universal’ signal that could be used by a variety of bacteria for communication among and between species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...