ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-02-11
    Description: DARPP-32, a dopamine- and adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (32 kilodaltons in size), is an obligate intermediate in progesterone (P)-facilitated sexual receptivity in female rats and mice. The facilitative effect of P on sexual receptivity in female rats was blocked by antisense oligonucleotides to DARPP-32. Homozygous mice carrying a null mutation for the DARPP-32 gene exhibited minimal levels of P-facilitated sexual receptivity when compared to their wild-type littermates. P significantly increased hypothalamic cAMP levels and cAMP-dependent protein kinase activity. These increases were not inhibited by a D1 subclass dopamine receptor antagonist. P also enhanced phosphorylation of DARPP-32 on threonine 34 in the hypothalamus of mice. DARPP-32 activation is thus an obligatory step in progestin receptor regulation of sexual receptivity in rats and mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mani, S K -- Fienberg, A A -- O'Callaghan, J P -- Snyder, G L -- Allen, P B -- Dash, P K -- Moore, A N -- Mitchell, A J -- Bibb, J -- Greengard, P -- O'Malley, B W -- MH49662/MH/NIMH NIH HHS/ -- MH57442/MH/NIMH NIH HHS/ -- NS 35457/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Feb 11;287(5455):1053-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. smani@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10669419" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; Animals ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Dopamine/pharmacology ; Dopamine Agonists/pharmacology ; Dopamine and cAMP-Regulated Phosphoprotein 32 ; Female ; Hypothalamus/metabolism ; Injections, Intraventricular ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; *Nerve Tissue Proteins ; Oligonucleotides, Antisense/pharmacology ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Posture ; Progesterone/*pharmacology ; Proteins/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Progesterone/metabolism ; Serotonin/pharmacology ; Sexual Behavior, Animal/*drug effects ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-10-12
    Description: Recent observations indicating that promoter identity influences alternative RNA-processing decisions have created interest in the regulatory interactions between RNA polymerase II transcription and precursor messenger RNA (pre-mRNA) processing. We examined the impact of steroid receptor-mediated transcription on RNA processing with reporter genes subject to alternative splicing driven by steroid-sensitive promoters. Steroid hormones affected the processing of pre-mRNA synthesized from steroid-sensitive promoters, but not from steroid-unresponsive promoters, in a steroid receptor-dependent and receptor-selective manner. Several nuclear receptor coregulators showed differential splicing effects, suggesting that steroid hormone receptors may simultaneously control gene transcription activity and exon content of the product mRNA by recruiting coregulators involved in both processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Auboeuf, Didier -- Honig, Arnd -- Berget, Susan M -- O'Malley, Bert W -- GM 38526/GM/NIGMS NIH HHS/ -- HD-08818/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 11;298(5592):416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376702" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Antigens, CD44/genetics ; COS Cells ; Calcitonin/genetics ; Calcitonin Gene-Related Peptide/genetics ; Carrier Proteins/*metabolism ; Dexamethasone/metabolism/pharmacology ; Estradiol/metabolism/pharmacology ; Estrogen Receptor alpha ; Estrogen Receptor beta ; Exons ; Genes, Reporter ; HeLa Cells ; Humans ; *Intracellular Signaling Peptides and Proteins ; Mutation ; Progesterone/metabolism/pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Helicases/*metabolism ; RNA-Binding Protein FUS/*metabolism ; Receptors, Estrogen/genetics/metabolism ; Receptors, Glucocorticoid/metabolism ; Receptors, Progesterone/metabolism ; Response Elements ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-04-16
    Description: The in vivo biological function of a steroid receptor coactivator was assessed in mice in which the SRC-1 gene was inactivated by gene targeting. Although in both sexes the homozygous mutants were viable and fertile, target organs such as uterus, prostate, testis, and mammary gland exhibited decreased growth and development in response to steroid hormones. Expression of RNA encoding TIF2, a member of the SRC-1 family, was increased in the SRC-1 null mutant, perhaps compensating partially for the loss of SRC-1 function in target tissues. The results indicate that SRC-1 mediates steroid hormone responses in vivo and that loss of its coactivator function results in partial resistance to hormone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, J -- Qiu, Y -- DeMayo, F J -- Tsai, S Y -- Tsai, M J -- O'Malley, B W -- New York, N.Y. -- Science. 1998 Mar 20;279(5358):1922-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9506940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drug Resistance ; Estradiol/blood/pharmacology ; Female ; Gene Targeting ; Genitalia, Male/drug effects/*growth & development ; Gonadal Steroid Hormones/*pharmacology ; Histone Acetyltransferases ; Male ; Mammary Glands, Animal/drug effects/*growth & development ; Mice ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 2 ; Organ Size/drug effects ; Pregnancy ; Progesterone/blood/pharmacology ; Prostate/drug effects/growth & development ; Stem Cells ; Testis/drug effects/growth & development ; Testosterone/blood/pharmacology ; Transcription Factors/genetics/*physiology ; Uterus/drug effects/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-04-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lonard, David M -- O'Malley, Bert W -- England -- Nature. 2008 Apr 24;452(7190):946-7. doi: 10.1038/452946a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18432236" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/*genetics/*metabolism ; *Chromosome Positioning ; Estrogen Receptor alpha/metabolism ; *Gene Expression Regulation ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-06-14
    Description: The chicken ovalbumin upstream promoter transcription factor (COUP-TF) is a member of the steroid receptor superfamily and participates in the regulation of several genes. While a number of functions have been ascribed to COUP-TF, no ligand or activator molecule has been identified, and thus it is classified as one of a group of orphan receptors. Activation of COUP-TF by physiological concentrations of the neurotransmitter dopamine was observed in transient transfection assays. Treatment of transfected cells with the dopamine receptor agonist alpha-ergocryptine also activated COUP-dependent expression of a reporter gene. COUP-TF that contained a deletion in the COOH-terminal domain was not activated by these compounds. These observations suggest that dopamine may be a physiological activator of COUP-TF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Power, R F -- Lydon, J P -- Conneely, O M -- O'Malley, B W -- New York, N.Y. -- Science. 1991 Jun 14;252(5012):1546-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047861" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Cell Line ; Chickens ; Chimera ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Dopamine/*pharmacology ; Ergolines/pharmacology ; Ethers, Cyclic/pharmacology ; Gene Expression/drug effects ; Okadaic Acid ; Ovalbumin/*genetics ; *Promoter Regions, Genetic ; Receptors, Steroid/drug effects/genetics/*metabolism ; Transcription Factors/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-12-21
    Description: The progesterone receptor (PR) in the chicken oviduct is a phosphoprotein that regulates gene transcription in the presence of progesterone. Treatment with progesterone in vivo stimulates phosphorylation of the progesterone receptor. With transient transfection assays, the present work has tested whether phosphorylation participates in the regulation of PR-mediated transcription. Treatment with 8-bromo-cyclic adenosine monophosphate (8-Br cAMP), a stimulator of cAMP-dependent protein kinase [protein kinase A (PKA)], mimicked progesterone-dependent, receptor-mediated transcription in the absence of progesterone. Inhibition of PKA blocked hormone action. Treatment with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, stimulated transcription in a manner similar to that of progesterone. These observations suggest that phosphorylation of the PR or other proteins in the transcription complex can modulate PR-mediated transcription in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denner, L A -- Weigel, N L -- Maxwell, B L -- Schrader, W T -- O'Malley, B W -- HD-07857/HD/NICHD NIH HHS/ -- HD-22061/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1740-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2176746" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Cell Line ; Chickens ; Female ; Gene Expression Regulation ; Kinetics ; Oviducts/metabolism ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Phosphorylation ; Progesterone/*pharmacology ; Receptors, Progesterone/*metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-12-13
    Description: The current view of how steroid hormone receptors affect gene transcription is that these receptors, on binding ligand, change to a state in which they can interact with chromatin and regulate transcription of target genes. Receptor activation is believed to be dependent only on this ligand-binding event. Selected steroid hormone receptors can be activated in a ligand-independent manner by a membrane receptor agonist, the neurotransmitter dopamine. In vitro, dopamine faithfully mimicked the effect of progesterone by causing a translocation of chicken progesterone receptor (cPR) from cytoplasm to nucleus. Dual activation by progesterone and dopamine was dissociable, and a serine residue in the cPR was identified that is not necessary for progesterone-dependent activation of cPR, but is essential for dopamine activation of this receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Power, R F -- Mani, S K -- Codina, J -- Conneely, O M -- O'Malley, B W -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1636-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1749936" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; Adenylyl Cyclases/physiology ; Animals ; Cell Line ; Cercopithecus aethiops ; Dopamine/*pharmacology ; Epinephrine/pharmacology ; Ergolines/pharmacology ; Ethers, Cyclic/pharmacology ; Gene Expression Regulation/drug effects ; In Vitro Techniques ; Isoproterenol/pharmacology ; Ligands ; Norepinephrine/pharmacology ; Okadaic Acid ; Promoter Regions, Genetic ; Quinpirole ; Receptors, Dopamine/*physiology ; Receptors, Steroid/*physiology ; Regulatory Sequences, Nucleic Acid ; Signal Transduction ; Transcription Factors/physiology ; Transcription, Genetic/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-11-29
    Description: Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease-1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor RORalpha. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668604/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668604/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chopra, Atul R -- Louet, Jean-Francois -- Saha, Pradip -- An, Jie -- Demayo, Franco -- Xu, Jianming -- York, Brian -- Karpen, Saul -- Finegold, Milton -- Moore, David -- Chan, Lawrence -- Newgard, Christopher B -- O'Malley, Bert W -- DK58242/DK/NIDDK NIH HHS/ -- HL51586/HL/NHLBI NIH HHS/ -- P01 DK059820/DK/NIDDK NIH HHS/ -- P01 DK059820-08/DK/NIDDK NIH HHS/ -- P01 DK58398/DK/NIDDK NIH HHS/ -- P01 DK59820/DK/NIDDK NIH HHS/ -- R01 DK056239/DK/NIDDK NIH HHS/ -- R01 DK056239-08/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-07/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 28;322(5906):1395-9. doi: 10.1126/science.1164847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Fasting ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Enzymologic ; Glucose/*metabolism ; Glucose-6-Phosphatase/*genetics/metabolism ; Glycogen Storage Disease Type I/*genetics/metabolism ; Hepatocytes/metabolism ; Kidney/metabolism ; Liver/*metabolism ; Liver Glycogen/metabolism ; Male ; Mice ; Mice, Knockout ; Nuclear Receptor Coactivator 2/genetics/*metabolism ; RNA Interference ; Receptors, Retinoic Acid/metabolism ; Response Elements ; Transcription, Genetic ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mani, S K -- Allen, J M -- Clark, J H -- Blaustein, J D -- O'Malley, B W -- New York, N.Y. -- Science. 1995 Jun 30;268(5219):1833.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7604251" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Estradiol/*pharmacology ; Female ; Male ; Neurotransmitter Agents/*physiology ; Rats ; Sexual Behavior, Animal/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-11-24
    Description: A yeast two-hybrid system was used to identify a protein that interacts with and enhances the human progesterone receptor (hPR) transcriptional activity without altering the basal activity of the promoter. Because the protein stimulated transactivation of all the steroid receptors tested, it has been termed steroid receptor coactivator-1 (SRC-1). Coexpression of SRC-1 reversed the ability of the estrogen receptor to squelch activation by hPR. Also, the amino terminal truncated form of SRC-1 acted as a dominant-negative repressor. Together, these results indicate that SRC-1 encodes a coactivator that is required for full transcriptional activity of the steroid receptor superfamily.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onate, S A -- Tsai, S Y -- Tsai, M J -- O'Malley, B W -- HD08188/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 24;270(5240):1354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481822" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cyclic AMP Response Element-Binding Protein/metabolism ; Gene Expression ; HeLa Cells ; Histone Acetyltransferases ; Hormone Antagonists/metabolism/pharmacology ; Humans ; Mifepristone/metabolism/pharmacology ; Molecular Sequence Data ; Nuclear Receptor Coactivator 1 ; Promegestone/pharmacology ; Receptors, Progesterone/*metabolism ; Receptors, Steroid/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/*metabolism ; Transcription Factors/*chemistry/genetics/*metabolism ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...