ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Witt, Verena; Wild, Christian; Anthony, Kenneth R N; Diaz-Pulido, Guillermo; Uthicke, Sven (2011): Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environmental Microbiology, 13(11), 2976-2989, https://doi.org/10.1111/j.1462-2920.2011.02571.x
    Publication Date: 2024-03-15
    Description: Rising anthropogenic CO2 emissions acidify the oceans, and cause changes to seawater carbon chemistry. Bacterial biofilm communities reflect environmental disturbances and may rapidly respond to ocean acidification. This study investigates community composition and activity responses to experimental ocean acidification in biofilms from the Australian Great Barrier Reef. Natural biofilms grown on glass slides were exposed for 11 d to four controlled pCO2 concentrations representing the following scenarios: A) pre-industrial (~300 ppm), B) present-day (~400 ppm), C) mid century (~560 ppm) and D) late century (~1140 ppm). Terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes revealed CO2-correlated bacterial community shifts between treatments A, B and D. Observed bacterial community shifts were driven by decreases in the relative abundance of Alphaproteobacteria and increases of Flavobacteriales (Bacteroidetes) at increased CO2 concentrations, indicating pH sensitivity of specific bacterial groups. Elevated pCO2 (C + D) shifted biofilm algal communities and significantly increased C and N contents, yet O2 fluxes, measured using in light and dark incubations, remained unchanged. Our findings suggest that bacterial biofilm communities rapidly adapt and reorganize in response to high pCO2 to maintain activity such as oxygen production.
    Keywords: Algae; Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbon, inorganic, total; Carbon, inorganic, total, standard deviation; Carbon, organic, total; Carbon, organic, total, standard deviation; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Diatoms; Element analyser, THERMO NA 2500; Entire community; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Nitrogen, inorganic; Nitrogen, total; Nitrogen, total, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; pH; pH, standard error; pH meter (HQ10-HQ20 Meters, Hach, USA); Potentiometric open-cell titration; Replicates; Rocky-shore community; Salinity; South Pacific; Temperate; Temperature, water; Temperature logger, Onset, UA-001; TOC analyzer (Shimadzu)
    Type: Dataset
    Format: text/tab-separated-values, 156 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Diaz-Pulido, Guillermo; Gouezo, Marine; Tilbrook, Bronte; Dove, Sophie; Anthony, Kenneth R N (2011): High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters, 14(2), 156-162, https://doi.org/10.1111/j.1461-0248.2010.01565.x
    Publication Date: 2024-03-15
    Description: Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.
    Keywords: Acropora intermedia; Alkalinity, total; Alkalinity, total, standard deviation; Ammonium; Ammonium, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, dissolved; Carbon, organic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure, standard deviation; Chromista; Coast and continental shelf; Coulometric titration; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Identification; Laboratory experiment; Lobophora papenfussii; Macroalgae; Nitrate; Nitrate, standard deviation; Nitrite; Nitrite, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH meter (Mettler Toledo, USA); Phosphate; Phosphate, standard deviation; Potentiometric open-cell titration; Replicates; Salinity; Sample ID; South Pacific; Species; Species interaction; Temperature, water; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 10488 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Crawley, Alicia; Kline, David I; Dunn, Simon; Anthony, Kenneth R N; Dove, Sophie (2010): The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biology, 16(2), 851-863, https://doi.org/10.1111/j.1365-2486.2009.01943.x
    Publication Date: 2024-03-15
    Description: Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.
    Keywords: Acropora formosa; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Determined by the greatest rate of oxygen evolution at high light; EPOCA; Estimated by regressing O2 against time; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Light:Dark cycle; Measured; OA-ICC; Ocean Acidification International Coordination Centre; Odyssey light loggers (Dataflow Systems, Christchurch, New Zealand); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Photosynthetic capacity, oxygen production; Photosynthetic capacity, oxygen production per cell; Primary production/Photosynthesis; Radiation, photosynthetically active; Respiration; Respiration rate, oxygen, dark per cell; Salinity; Single species; South Pacific; T50 Titrator (Mettler Toledo, Port Melbourne, Australia); Temperature, water; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 63 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Anthony, Kenneth R N; Kline, David I; Diaz-Pulido, Guillermo; Dove, Sophie; Hoegh-Guldberg, Ove (2008): Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 7442-7446, https://doi.org/10.1073/pnas.0804478105
    Publication Date: 2024-03-15
    Description: Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.
    Keywords: Acropora intermedia; Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Animalia; Anthony_etal_08; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Bleaching; Buoyant weighing technique according to Davies (1989); Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Macroalgae; Net productivity of oxygen; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH logger, MicroChem interface (TPS Australia); Plantae; Porites lobata; Porolithon onkodes; Primary production/Photosynthesis; Refractometer, Bellingham Stanley; Rhodophyta; Salinity; Single species; South Pacific; Temperate; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 162 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-22
    Print ISSN: 0722-4028
    Electronic ISSN: 1432-0975
    Topics: Biology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2004-08-20
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-08-01
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-01
    Print ISSN: 0025-3162
    Electronic ISSN: 1432-1793
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-09-27
    Print ISSN: 0025-3162
    Electronic ISSN: 1432-1793
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...