ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1969-09-01
    Print ISSN: 0001-1541
    Electronic ISSN: 1547-5905
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley on behalf of American Institute of Chemical Engineers.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.
    Keywords: Life Sciences (General)
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S42-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: It is usually considered that red-cell mass is controlled by erythropoietin-driven bone marrow red-cell production, and no physiological mechanisms can shorten survival of circulating red cells. In adapting to acute plethora in microgravity, astronauts' red-cell mass falls too rapidly to be explained by diminished red-cell production. Ferrokinetics show no early decline in erythropolesis, but red cells radiolabelled 12 days before launch survive normally. Selective destruction of the youngest circulating red cells-a process we call neocytolysis-is the only plausible explanation. A fall in erythropoietin below a threshold is likely to initiate neocytolysis, probably by influencing surface-adhesion molecules. Recognition of neocytolysis will require re-examination of the pathophysiology and treatment of several blood disorders, including the anaemia of renal disease.
    Keywords: Life Sciences (General)
    Type: Lancet (ISSN 0140-6736); Volume 349; 9062; 1389-90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Neocytolysis is a recently described physiological process affecting the selective hemolysis of young red blood cells in circumstances of plethora. Erythropoietin (EPO) depression appears to initiate the process, providing the rationale to investigate its contributions to the anemia of renal disease. When EPO therapy was withheld, four of five stable hemodialysis patients showed chromium 51 (51Cr)-red cell survival patterns indicative of neocytolysis; red cell survival was short in the first 9 days, then normalized. Two of these four patients received oral 13C-glycine and 15N-glycine, and there was a suggestion of pathological isotope enrichment of stool porphyrins when EPO therapy was held, again supporting selective hemolysis of newly released red cells that take up the isotope (one patient had chronic hemolysis indicated by isotope studies of blood and stool). Thus, neocytolysis can contribute to the anemia of renal disease and explain some unresolved issues about such anemia. One implication is the prediction that intravenous bolus EPO therapy is metabolically and economically inefficient compared with lower doses administered more frequently subcutaneously.
    Keywords: Life Sciences (General)
    Type: American journal of kidney diseases : the official journal of the National Kidney Foundation (ISSN 0272-6386); Volume 33; 1; 59-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Astronauts predictably experience anemia after return from space. Upon entering microgravity, the blood volume in the extremities pools centrally and plasma volume decreases, causing plethora and erythropoietin suppression. There ensues neocytolysis, selective hemolysis of the youngest circulating red cells, allowing rapid adaptation to the space environment but becoming maladaptive on re-entry to a gravitational field. The existence of this physiologic control process was confirmed in polycythemic high-altitude dwellers transported to sea level. Pathologic neocytolysis contributes to the anemia of renal failure. Understanding the process has implications for optimizing erythropoietin-dosing schedules and the therapy of other human disorders. Human and rodent models of neocytolysis are being created to help find out how interactions between endothelial cells, reticuloendothelial phagocytes and young erythrocytes are altered, and to shed light on the expression of surface adhesion molecules underlying this process. Thus, unraveling a problem for space travelers has uncovered a physiologic process controlling the red cell mass that can be applied to human disorders on Earth.
    Keywords: Life Sciences (General)
    Type: Pflugers Archiv : European journal of physiology (ISSN 0031-6768); Volume 441; 2-3 Suppl; R91-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: BACKGROUND: Studies of space-flight anemia have uncovered a physiologic process, neocytolysis, by which young red blood cells are selectively hemolyzed, allowing rapid adaptation when red cell mass is excessive for a new environment. OBJECTIVES: 1) To confirm that neocytolysis occurs in another situation of acute plethora-when high-altitude dwellers with polycythemia descend to sea level; and 2) to clarify the role of erythropoietin suppression. DESIGN: Prospective observational and interventional study. SETTING: Cerro de Pasco (4380 m) and Lima (sea level), Peru. PARTICIPANTS: Nine volunteers with polycythemia. INTERVENTIONS: Volunteers were transported to sea level; three received low-dose erythropoietin. MEASUREMENTS: Changes in red cell mass, hematocrit, hemoglobin concentration, reticulocyte count, ferritin level, serum erythropoietin, and enrichment of administered(13)C in heme. RESULTS: In six participants, red cell mass decreased by 7% to 10% within a few days of descent; this decrease was mirrored by a rapid increase in serum ferritin level. Reticulocyte production did not decrease, a finding that establishes a hemolytic mechanism.(13)C changes in circulating heme were consistent with hemolysis of young cells. Erythropoietin was suppressed, and administration of exogenous erythropoietin prevented the changes in red cell mass, serum ferritin level, and(13)C-heme. CONCLUSIONS: Neocytolysis and the role of erythropoietin are confirmed in persons with polycythemia who descend from high altitude. This may have implications that extend beyond space and altitude medicine to renal disease and other situations of erythropoietin suppression, hemolysis, and polycythemia.
    Keywords: Aerospace Medicine
    Type: Annals of internal medicine (ISSN 0003-4819); Volume 134; 8; 652-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 3; 2; 87-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: BACKGROUND: We have described the rapid destruction of young red blood cells (neocytolysis) in astronauts adapting to microgravity, in polycythemic high altitude dwellers who descend to sea level, and in patients with kidney disorders. This destruction results from a decrease in erythropoietin (EPO) production. We hypothesized that such EPO withdrawal could trigger physiological changes in cells other than red cell precursors and possibly lead to the uptake and destruction of young red cells by altering endothelial cell-macrophage interactions, most likely occurring in the spleen. METHODS: We identified EPO receptors on human splenic endothelial cells (HSEC) and investigated the responses of these cells to EPO withdrawal. RESULTS: A monolayer of HSEC, unlike human endothelial cells from aorta, glomerulus, or umbilical vein, demonstrated an increase in permeability upon EPO withdrawal that was accompanied by unique morphological changes. When HSEC were cultured with monocyte-derived macrophages (but not when either cell type was cultured alone), EPO withdrawal induced an increased ingestion of young red cells by macrophages when compared with the constant presence or absence of EPO. CONCLUSIONS: HSEC may represent a unique cell type that is able to respond to EPO withdrawal by increasing permeability and interacting with phagocytic macrophages, which leads to neocytolysis.
    Keywords: Life Sciences (General)
    Type: Journal of investigative medicine : the official publication of the American Federation for Clinical Research (ISSN 1081-5589); 49; 4; 335-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 15 (1969), S. 707-711 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Red blood cell damage and destruction are important problems in the use of artificial valves, heart-lung machines, and other devices which pump or process blood. An experimental study has been made on the mechanism of cell damage. Damage was defined by three types of observations on blood which had been subjected to trauma: (a) release of hemoglobin from cells (hemolysis), (b) morphological changes observed microscopically, and (c) red cell life span studies in rabbits using a Cr51 tagging technique.Three types of physical forces which might be injurious to red cells were studied; shearing stress (of known, constant magnitudes from a concentric cylinder viscometer), pressure variations (from studies in a static pressure cell), and direct impact of solid surfaces (from studies in a device which simulates the seating action of artificial heart valves).The study shows that high shearing stress may be primarily responsible for mechanical cell damage under certain important circumstances. There is a critical shearing stress above which cell damage increases markedly. Much of the cell damage does not appear as an immediate release of hemoglobin. Many cells undergo morphological changes and exhibit shortened average life span in vivo. The morphological changes due to shearing stress are very similar to the changes observed in patients who have hemolytic anemia associated with artificial valves.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...