ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-30
    Description: Movies: for all mapped movies (movie S1 - S6): white circles indicate the presence of a pollen record; blue dots indicate archaeological remains of wild terrestrial ungulates; and red dots indicate the remains of domestic animals. The distribution of the faunal remains was based on summed probability distributions of radiocarbon dates at 100-year time intervals (see Phelps et al. in press for further methodological information). Movie S1a: The climatic envelope of forest mapped at 100-year intervals, using the direct methodology with WorldClim data (black background). Movie S1b: The climatic envelope of forest mapped at 100-year intervals, using the direct methodology with WorldClim data (white background). Movie S1c: The climatic envelope of forest mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (black background). Movie S1d: The climatic envelope of forest taxa mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (white background). Movie S1e: The climatic envelope of forest taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (black background). Movie S1f: The climatic envelope of forest taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (white background). Movie S1g: The climatic envelope of forest taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (black background). Movie S1h: The climatic envelope of forest taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (white background). ______________________________________________________________________________________ Movie S2a: The climatic envelope of grassy biomes (savanna- and steppe-associated taxa) mapped at 100-year intervals, using the direct methodology with WorldClim data (black background). Movie S2b: The climatic envelope of grassy biomes (savanna- and steppe-associated taxa) mapped at 100-year intervals, using the direct methodology with WorldClim data (white background). Movie S2c: The climatic envelope of grassy biomes (savanna- and steppe-associated taxa) mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (black background). Movie S2d: The climatic envelope of grassy biomes (savanna- and steppe-associated taxa) mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (white background). ______________________________________________________________________________________ Movie S3a: The climatic envelope of savanna-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (black background). Movie S3b: The climatic envelope of savanna-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (white background). Movie S3c: The climatic envelope of savanna-associated taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (black background). Movie S3d: The climatic envelope of savanna-associated taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (white background). ______________________________________________________________________________________ Movie S4a: The climatic envelope of steppe-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (black background). Movie S4b: The climatic envelope of steppe-associated taxa mapped mapped at 100-year intervals, using the indirect methodology, WorldClim data (white background). Movie S4c: The climatic envelope of steppe-associated taxa mapped mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (black background). Movie S4d: The climatic envelope of steppe-associated taxa mapped mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (white background). ______________________________________________________________________________________ Movie S5a: The climatic envelope of desert-associated taxa mapped mapped at 100-year intervals, using the direct methodology with WorldClim data (black background). Movie S5b: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the direct methodology with WorldClim data (white background). Movie S5c: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (black background). Movie S5d: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (white background). Movie S5e: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (black background). Movie S5f: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (white background). Movie S5g: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (black background). Movie S5h: The climatic envelope of desert-associated taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (white background). ______________________________________________________________________________________ Movie S6a: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the direct methodology with WorldClim data (black background). Movie S6b: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the direct methodology with WorldClim data (white background). Movie S6c: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (black background). Movie S6d: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the direct methodology with TraCE-21ka climate information (white background). Movie S6e: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (black background). Movie S6f: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the indirect methodology, WorldClim data (white background). Movie S6g: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (black background). Movie S6h: The climatic envelope of xeric-associated taxa mapped at 100-year intervals, using the indirect methodology, TraCE-21ka climate information (white background). ______________________________________________________________________________________ Movie S7a: Multivariate environmental similarity surface (MESS) analyses plotted in geographic space using the direct methodology with repeated, modern-day WorldClim data. White areas demonstrate neutrality: i.e., neither similarity nor dissimilarity. Movie S7b: Multivariate environmental similarity surface (MESS) analyses plotted in geographic space using the direct methodology with TraCE-21ka climate information. White areas demonstrate neutrality: i.e., neither similarity nor dissimilarity. Movie S7c: Multivariate environmental similarity surface (MESS) analyses plotted in geographic space using the indirect methodology with repeated, modern-day WorldClim data. White areas demonstrate neutrality: i.e., neither similarity nor dissimilarity. Movie S7d: Multivariate environmental similarity surface (MESS) analyses plotted in geographic space using the indirect methodology with TraCE-21ka climate information. White areas demonstrate neutrality: i.e., neither similarity nor dissimilarity. ______________________________________________________________________________________ Movie S8a: Climatic envelope overlap between forest and grassy biomes (savanna and steppe) plotted in climate space. Envelopes were generated using the direct methodology and TraCE-21ka climate information. Red areas indicate the presence of grassy biomes only, whereas purple indicates overlap between grassy biomes and forest. For reference to the climatic variables used to define the climate space, see the TraCE-21ka correlation circle in figure A2. Movie S8b: Climatic envelope overlap between forest and savanna only, plotted in climate space. Envelopes were generated using the indirect methodology and TraCE-21ka climate information. Red areas indicate the presence of savanna only, whereas purple indicates overlap between savanna and forest. For reference to the climatic variables used, see the TraCE-21ka correlation circle in figure A2.
    Keywords: African Humid Period; biomization scheme; disturbance dynamics; ecosystem response to climate change; File content; File format; File name; File size; land use and land cover change; palynology; PFT; reconstructing vegetation change; subfossil pollen records; Uniform resource locator/link to file; vegetation-environment interactions
    Type: Dataset
    Format: text/tab-separated-values, 210 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-20
    Description: This dataset is associated with Phelps et al. (2020, DOI: 10.1111/ecog.04990), and is comprised of paleoecological information from African subfossil pollen assemblages over the past 20,000 years. Data includes the following information: Appendix 1: a list of collated sites from the APD, EPD, and other publications Appendix 2: a list of collated entities from the APD, EPD, and other publications Appendix 3: a list of citations for each entity in appendix 2, whether analyzed or not Appendix 4: a harmonized taxa list with original taxa names and numbers Appendix 5: a list of collated samples from the APD, EPD, and other publications Appendix 6: a list of counts from the APD, EPD, ACER, and other publications Appendix 7: a list of dates (14C, etc) from the APD, EPD, ACER, and other publications Appendix 8: a list of CLAM outputs calculated (Blaauw 2010) from the list of radiocarbon dates Appendix 9: a harmonized biomization scheme for "direct" and "indirect" methods For use of these datasets, associated publications (see appendix 3) and databases should be cited: The African Pollen Database (APD: Vincens et al. 2007, http://fpd.sedoo.fr/fpd/bibli.do) The European Pollen Database (EPD: Fyfe et al. 2009, http://www.europeanpollendatabase.net/getdata/) The ACER Pollen and Charcoal Database (Sánchez Goñi et al. 2017) Additional information was added to these appendices in association with the following publications (note: information was extracted from publications and/or contributed by authors): Brenac 1988, Burrough & Willis 2015, Chase et al. 2015b, Cheddadi et al. 2015, 2016, 2017, Cordova et al. 2017, Giresse et al. 1994, Lim et al. 2016, Maley 1991, Maley & Brenac 1998, Metwally et al. 2014, Quick et al. 2016, 2018, Valsecchi et al. 2013, Waller et al. 2007. The harmonized biomization scheme (appendix 9), is based on six primary publications: Jolly et al. 1998, Elenga et al. 2000, Vincens et al. 2006, Vincens et al. 2007, Lebamba et al. 2009, Lézine et al. 2009, with reference to the African Plant Database (version 3.4.0).
    Keywords: African Humid Period; biomization scheme; disturbance dynamics; ecosystem response to climate change; land use and land cover change; palynology; PFT; reconstructing vegetation change; subfossil pollen records; vegetation-environment interactions
    Type: Dataset
    Format: application/zip, 2.1 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-11
    Electronic ISSN: 2397-334X
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2020-06-18
    Description: Although lacustrine sedimentary charcoal has long been used to infer paleofires, their quantitative reconstructions require improvements of the calibration of their links with fire regimes (i.e. occurrence, area, and severity) and the taphonomic processes that affect charcoal particles between the production and the deposition in lake sediments. Charcoal particles 〉150 µm were monitored yearly from 2011 to 2016 using traps submerged in seven head lakes situated in flat-to-rolling boreal forest landscapes in eastern Canada. The burned area was measured, and the above-ground fire severity was assessed using the differentiated normalized burn ratio (dNBR) index, derived from LANDSAT images, and measurements taken within zones radiating 3, 15, and 30 km from the lakes. In order to evaluate potential lag effects in the charcoal record, fire metrics were assessed for the year of recorded charcoal recording (lag 0) and up to 5 years before charcoal deposition (lag 5). A total of 92 variables were generated and sorted using a Random Forest-based methodology. The most explanatory variables for annual charcoal particle presence, expressed as the median surface area, were selected. Results show that, temporally, sedimentary charcoal accurately recorded fire events without a temporal lag; spatially, fires were recorded up to 30 km from the lakes. Selected variables highlighted the importance of burned area and fire severity in explaining lacustrine charcoal. The charcoal influx was thus driven by fire area and severity during the production process. The dispersion process of particles resulted mostly of wind transportation within the regional (
    Print ISSN: 0959-6836
    Electronic ISSN: 1477-0911
    Topics: Geography , Geosciences
    Published by Sage Publications
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-01
    Description: Forest ecosystems in eastern Canada are particularly sensitive to climate change and may shift from carbon sinks to carbon sources in the coming decades. Understanding how forest biomass responded to past climate change is thus of crucial interest, but past biomass reconstruction still represents a challenge. Here we used transfer functions based on modern pollen assemblages and remotely sensed biomass estimation to reconstruct and quantify, for the last 14 000 years, tree biomass dynamics for the six main tree genera of the boreal and mixedwood forests (Abies, Acer, Betula, Picea, Pinus, Populus). We compared the mean genera and total biomass with climatic (summer temperatures and annual precipitation), physical (CO2, insolation, ice area), and disturbance (burned biomass) variables to identify the potential drivers influencing the long-term trends in tree biomass. For most genera, tree biomass was related to summer temperature, insolation, and CO2 levels; Picea was the exception and its biomass also correlated with annual precipitation. At the onset of the Holocene and during the Holocene Thermal Maximum (ca. 10 000–6000 BP), tree biomass tracked the melting of the Laurentide Ice Sheet with high values (〉50 tonnes·ha–1 and a total of 12 Pg). These values, in the range of modern forest ecosystems biomass, indicate that trees were probably able to survive in a periglacial environment and to colonize the region without any discernible lag by tracking the ice retreat. High biomass at the beginning of the Holocene was likely favoured by higher than present insolation, CO2 levels higher than during the Last Glacial Maximum, and temperature and precipitation close to present-day levels. Past tree biomass reconstruction thus brings novel insights about the drivers of postglacial tree biomass and the overall biogeography of the region since the deglaciation.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-01
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of Ecological Society of America.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-14
    Electronic ISSN: 2571-6255
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2018-12-01
    Print ISSN: 0378-1127
    Electronic ISSN: 1872-7042
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...