ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-09
    Description: Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-23
    Description: Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3738909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manske, Magnus -- Miotto, Olivo -- Campino, Susana -- Auburn, Sarah -- Almagro-Garcia, Jacob -- Maslen, Gareth -- O'Brien, Jack -- Djimde, Abdoulaye -- Doumbo, Ogobara -- Zongo, Issaka -- Ouedraogo, Jean-Bosco -- Michon, Pascal -- Mueller, Ivo -- Siba, Peter -- Nzila, Alexis -- Borrmann, Steffen -- Kiara, Steven M -- Marsh, Kevin -- Jiang, Hongying -- Su, Xin-Zhuan -- Amaratunga, Chanaki -- Fairhurst, Rick -- Socheat, Duong -- Nosten, Francois -- Imwong, Mallika -- White, Nicholas J -- Sanders, Mandy -- Anastasi, Elisa -- Alcock, Dan -- Drury, Eleanor -- Oyola, Samuel -- Quail, Michael A -- Turner, Daniel J -- Ruano-Rubio, Valentin -- Jyothi, Dushyanth -- Amenga-Etego, Lucas -- Hubbart, Christina -- Jeffreys, Anna -- Rowlands, Kate -- Sutherland, Colin -- Roper, Cally -- Mangano, Valentina -- Modiano, David -- Tan, John C -- Ferdig, Michael T -- Amambua-Ngwa, Alfred -- Conway, David J -- Takala-Harrison, Shannon -- Plowe, Christopher V -- Rayner, Julian C -- Rockett, Kirk A -- Clark, Taane G -- Newbold, Chris I -- Berriman, Matthew -- MacInnis, Bronwyn -- Kwiatkowski, Dominic P -- 075491/Z/04/Wellcome Trust/United Kingdom -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 082370/Wellcome Trust/United Kingdom -- 089275/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 090770/Wellcome Trust/United Kingdom -- 090770/Z/09/Z/Wellcome Trust/United Kingdom -- 092654/Wellcome Trust/United Kingdom -- 093956/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 55005502/Howard Hughes Medical Institute/ -- G0600718/Medical Research Council/United Kingdom -- G19/9/Medical Research Council/United Kingdom -- Intramural NIH HHS/ -- England -- Nature. 2012 Jul 19;487(7407):375-9. doi: 10.1038/nature11174.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722859" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; *Biodiversity ; Genome, Protozoan ; Genotype ; *High-Throughput Nucleotide Sequencing ; Humans ; Malaria, Falciparum/*parasitology ; Phylogeny ; Plasmodium falciparum/classification/*genetics ; Polymorphism, Single Nucleotide ; Principal Component Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-13
    Description: The African continent continues to bear the greatest burden of malaria and the greatest diversity of parasites, mosquito vectors, and human victims. The evolutionary plasticity of malaria parasites and their vectors is a major obstacle to eliminating the disease. Of current concern is the recently reported emergence of resistance to the front-line drug, artemisinin, in South-East Asia in Plasmodium falciparum, which calls for preemptive surveillance of the African parasite population for genetic markers of emerging drug resistance. Here we describe the Plasmodium Diversity Network Africa (PDNA), which has been established across 11 countries in sub-Saharan Africa to ensure that African scientists are enabled to work together and to play a key role in the global effort for tracking and responding to this public health threat.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghansah, Anita -- Amenga-Etego, Lucas -- Amambua-Ngwa, Alfred -- Andagalu, Ben -- Apinjoh, Tobias -- Bouyou-Akotet, Marielle -- Cornelius, Victoria -- Golassa, Lemu -- Andrianaranjaka, Voahangy Hanitriniaina -- Ishengoma, Deus -- Johnson, Kimberly -- Kamau, Edwin -- Maiga-Ascofare, Oumou -- Mumba, Dieudonne -- Tindana, Paulina -- Tshefu-Kitoto, Antoinette -- Randrianarivelojosia, Milijaona -- William, Yavo -- Kwiatkowski, Dominic P -- Djimde, Abdoulaye A -- 090532/Wellcome Trust/United Kingdom -- 090770/Wellcome Trust/United Kingdom -- G0600718/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1297-8. doi: 10.1126/science.1259423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Noguchi Memorial Institute for Medical Research, Accra, Ghana. ; Navrongo Health Research Centre, Navrongo, Ghana. ; Medical Research Council, Gambia Unit, Banjul, The Gambia. ; KEMRI/United States Army Medical Research Unit-Kenya, Kisumu, Nairobi, Kenya. ; Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon. ; Department of Parasitology Mycology, Faculty of Medicine, Universite des Sciences de la Sante, Libreville, Gabon. ; MRC Centre for Genomics and Global Health, University of Oxford, Oxford, UK. ; Aklilu Lemma Institute of Pathobiology, Addis Ababa University and Armauer Hansen Research Institute, Addis Ababa, Ethiopia. ; Malaria Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar. ; National Institute for Medical Research, Tanga, Tanzania. ; Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali. Bernhard Nocht Institute for Tropical Medicine in Hamburg, Germany. ; Institut National de Recherche Biomedicale, Ecole de Sante Publique/Faculte de Medecine/Universite de Kinshasa, Kinshasa, Democratic Republic of the Congo. ; Malaria Research and Control Center, National Institute of Public Health, Abidjan, Ivory Coast. ; MRC Centre for Genomics and Global Health, University of Oxford, Oxford, UK. Wellcome Trust Sanger Institute, Hinxton, UK. ; Malaria Research and Training Centre (MRTC), Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali. Wellcome Trust Sanger Institute, Hinxton, UK. adjimde@icermali.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214619" target="_blank"〉PubMed〈/a〉
    Keywords: Africa South of the Sahara/epidemiology ; Animals ; Anopheles gambiae/parasitology ; Antimalarials/*pharmacology/therapeutic use ; Artemisinins/*pharmacology/therapeutic use ; *Disease Eradication ; Drug Resistance/*genetics ; *Epidemiological Monitoring ; Genetic Variation ; Humans ; Malaria, Falciparum/drug therapy/parasitology/*prevention & control ; Plasmodium falciparum/drug effects/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-15
    Description: Article Tracing the source of malarial infections is an important step towards monitoring and controlling the disease. Here, Preston et al . analyse sequence data from 711 isolates and design a genetic barcode based on combined mitochondrial and apicoplast genomes that is able to distinguish between malaria parasites isolated from different geographical regions. Nature Communications doi: 10.1038/ncomms5052 Authors: Mark D. Preston, Susana Campino, Samuel A. Assefa, Diego F. Echeverry, Harold Ocholla, Alfred Amambua-Ngwa, Lindsay B. Stewart, David J. Conway, Steffen Borrmann, Pascal Michon, Issaka Zongo, Jean-Bosco Ouédraogo, Abdoulaye A. Djimde, Ogobara K. Doumbo, Francois Nosten, Arnab Pain, Teun Bousema, Chris J. Drakeley, Rick M. Fairhurst, Colin J. Sutherland, Cally Roper, Taane G. Clark
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-10
    Description: Genetic diversity of surface exposed and stage specific Plasmodium falciparum immunogenic proteins pose a major roadblock to developing an effective malaria vaccine with broad and long-lasting immunity. We conducted a prospective genetic analysis of candidate antigens (msp1, ama1, rh5, eba175, glurp, celtos, csp, lsa3, Pfsea, trap, conserved chrom3, hyp9, hyp10, phistb, surfin8.2, and surfin14.1) for malaria vaccine development on 2375 P. falciparum sequences from 16 African countries. We described signatures of balancing selection inferred from positive values of Tajima’s D for all antigens across all populations except for glurp. This could be as a result of immune selection on these antigens as positive Tajima’s D values mapped to regions with putative immune epitopes. A less diverse phistb antigen was characterised with a transmembrane domain, glycophosphatidyl anchors between the N and C- terminals, and surface epitopes that could be targets of immune recognition. This study demonstrates the value of population genetic and immunoinformatic analysis for identifying and characterising new putative vaccine candidates towards improving strain transcending immunity, and vaccine efficacy across all endemic populations.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...