ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 5543-5546 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Al/Ti based metallization is commonly used for ohmic contacts to n-GaN and related compounds. We have previously reported an ohmic contact scheme specially designed for AlGaN/GaN heterostructure field-effect transistors (HFETs) [D. Qiao et al., Appl. Phys. Lett. 74, 2652 (1999)]. This scheme, referred to as the "advancing interface" contact, takes advantage of the interfacial reactions between the metal layers and the AlGaN barrier layer in the HFET structure. These reactions consume a portion of the barrier, thus facilitating carrier tunneling from the source/drain regions to the channel region. The advancing interface approach has led to consistently low contact resistance on Al0.25Ga0.75N/GaN HFETs. There are two drawbacks of the Al/Ti based advancing interface scheme, (i) it requires a capping layer for the ohmic formation annealing since Ti is too reactive and is easily oxidized when annealing is performed in pure N2 or even in forming gas, and (ii) the atomic number of Al and that of Ti are too low to yield efficient backscattered electron emission for e-beam lithographic alignment purposes. In this work, we investigated a Ta based advancing interface contact scheme for the HFET structures. We found that the presence of Ta in this ohmic scheme leads to (1) a specific contact resistivity as low as 5×10−7 Ω cm2, (2) efficient electron emission for e-beam lithographic alignment, and (3) elimination of the capping layer for the ohmic annealing. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 801-804 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The dependence of the Schottky barrier height of Ni/AlxGa1−xN contact on the Al mole fraction up to x=0.23 was studied. The barrier heights were measured by I–V, capacitance–voltage, and the internal photoemission method. The Al mole fractions were estimated from the AlGaN band gap energies measured by photoluminescence. In the range of x〈0.2 a linear relationship between the barrier height and Al mole fraction was obtained. This was consistent with the slope predicted by the Schottky rule. For x=0.23, the measured barrier height was lower than predicted. We believed this was due to crystalline defects at the Ni/AlGaN interface. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2696-2699 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A photoconductance method was used to determine the band-gap energy and, therefore, the Al mole fraction of bulk AlxGa1−xN and AlxGa1−xN/GaN heterostructures. The results are compared with those obtained by a more elaborate photoluminescence method. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 1763-1771 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of strain-induced band-gap modulation has been studied in a GaAs/AlGaAs multiple-quantum-well structure with the wells located at various depths in the structure. The energy change in the quantum wells was calculated based on simple elasticity theory and measured using photoluminescence on the structure where a thin-film stressor array was deposited. Metallic thin-film stressors were made by conventional thin-film deposition techniques followed by photolithography. It was found that the elasticity theory describes the energy changes reasonably well in comparison with the experimental results. For stressor layers that react with the heterojunction structure, the situation was more complex and requires more detailed analysis. Based on the calculated and experimental results it appears possible to fabricate quantum wire with lateral dimensions of less than 100 nm using thin-film technology and e-beam lithography. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the use of thin film technology to introduce controllable and thermally stable stress into semiconductor heterostructures. Two simple schemes are used. The first scheme is to use interfacial reactions between a metal and the substrate, such as Ni, Co, Pd, and Pt on GaAs/AlGaAs. The induced stress in the structure is reproducible and controllable because the volumetric change for a given reaction is fixed, as long as the deposited film is fully reacted to form a compound. The stability of the stress depends on the stability of the compound. In the case of Ni and Co on GaAs/AlGaAs, the induced stress is thermally stable up to 600 °C. Evaporated films and reacted films are usually under tension. The second scheme is to use rf sputtered W or WNi alloy films where W or WNi is sputtered onto a negative dc biased substrate. This scheme effectively provides highly compressed films. The thermal stability depends on the concentration of Ni in the WNi alloy. Using the two schemes above, we have fabricated low-loss (∼1 dB/cm at 1.52 μm wavelength) photoelastic waveguides in GaAs/AlGaAs heterostructures, and explored the interrelationship between the photoelastic waveguide characteristics and the stress. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Efficient 1.3 and 1.55 μm InP-based electroabsorption waveguide modulators with planar device structures have been demonstrated. Elevated temperature oxygen ion implantation and/or the photoelastic effect induced by W metal stressor stripes deposited on the semiconductor surface have been used to produce these self-aligned planar guided-wave devices. The oxygen ion mixing process has been used to simultaneously achieve compositional disordering and electrical isolation of superlattice material while the photoelastic effect has been used to improve the lateral mode confinement. A 1.3 μm Franz–Keldysh modulator with a (approximately-greater-than)10 dB extinction ratio at 2 V and a 1.55 μm device with a (approximately-greater-than)10 dB extinction ratio at 7 V are reported. These single growth step planar processing techniques have also been used to fabricate relatively low-loss (〈4 dB/cm) double heterostructure InGaAs(P)/InP single-mode optical waveguides which demonstrate their usefulness in developing InP-based photonic integrated circuits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1880-1882 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A method for enhancing effective Schottky barrier heights in III–V nitride heterostructures based on the piezoelectric effect is proposed, demonstrated, and analyzed. Two-layer GaN/AlxGa1−xN barriers within heterostructure field-effect transistor epitaxial layer structures are shown to possess significantly larger effective barrier heights than those for AlxGa1−xN, and the influence of composition, doping, and layer thicknesses is assessed. A GaN/Al0.25Ga0.75N barrier structure optimized for heterojunction field-effect transistors is shown to yield a barrier height enhancement of 0.37 V over that for Al0.25Ga0.75N. Corresponding reductions in forward-bias current and reverse-bias leakage are observed in current–voltage measurements performed on Schottky diodes. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 1211-1213 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Deep-level transient spectroscopy has been used to characterize electronic defects in n-type GaN grown by reactive molecular-beam epitaxy. Five deep-level electronic defects were observed, with activation energies E1=0.234±0.006, E2=0.578±0.006, E3=0.657±0.031, E4=0.961±0.026, and E5=0.240±0.012 eV. Among these, the levels labeled E1, E2, and E3 are interpreted as corresponding to deep levels previously reported in n-GaN grown by both hydride vapor-phase epitaxy and metal organic chemical vapor deposition. Levels E4 and E5 do not correspond to any previously reported defect levels, and are characterized for the first time in our studies. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 1275-1277 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Platinum silicide (PtSi) and Pt Schottky contacts on n-GaN have been investigated and compared. The PtSi contacts were formed on n-GaN by annealing a multilayer structure of Pt/Si with the appropriate thickness ratio at 400 °C for 1 h in forming gas. The barrier height of the as-formed PtSi contacts was found to be 0.87 eV capacitance–voltage (C–V), and remained unchanged after further annealing at 400 and 500 °C. Upon annealing at 600 °C for 1 h, the barrier height decreased to 0.74 eV (C–V), but the diodes remained well-behaved. The as-deposited Pt yielded a barrier height of 1.0 eV (C–V). Upon annealing at 400 °C for 1 h, the Pt diodes degraded and most of the diodes did not survive additional annealing at 400 °C for longer times. The electrical measurements and the Rutherford backscattering spectrometry results indicated that PtSi contacts are thermally much more stable than Pt contacts on GaN. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 7442-7447 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Planar separate-confinement, double-heterostructure, single-quantum-well photoelastic GaAs/AlGaAs lasers have been fabricated using a novel yet practical processing technique involving thin-film surface WNi stressors for waveguiding and ion implantation for isolation. A p++-GaAs contact layer regrown by chemical beam epitaxy has been used to improve the WNi ohmic contacts to the lasers. Even without bonding on heat sinks, these planar photoelastic lasers operate at continuous wave at room temperature. The lowest threshold is 29 mA for a cavity length of 178 μm and a stressor width of 5 μm. The internal quantum efficiency above threshold is 75%. The characteristic temperature is 114 K. The main waveguiding mechanism of the photoelastic lasers is determined to be weak index guiding with the beam waist in the junction plane measured 10 μm behind the end facet. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...