ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-23
    Description: Author(s): M. Sander, M. Herzog, J. E. Pudell, M. Bargheer, N. Weinkauf, M. Pedersen, G. Newby, J. Sellmann, J. Schwarzkopf, V. Besse, V. V. Temnov, and P. Gaal X-ray reflectivity measurements of femtosecond laser-induced transient gratings (TG) are applied to demonstrate the spatiotemporal coherent control of thermally induced surface deformations on ultrafast time scales. Using grazing incidence x-ray diffraction we unambiguously measure the amplitude of ... [Phys. Rev. Lett. 119, 075901] Published Fri Aug 18, 2017
    Keywords: Condensed Matter: Structure, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-29
    Print ISSN: 2572-4517
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-02
    Description: The Marine Isotope Stage (MIS) 11 (424–374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic (N = 28) or planktonic (N = 31) stable oxygen isotope curves to a common time frame and subjected 48 of them to an empirical orthogonal function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~410 kyr. The second EOF, which explained ~18% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3–6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties 〉1 °C. In order to validate the CCSM3 (Community Climate System Model, version 3) predictive potential, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-12
    Description: The Marine Isotope Stage (MIS) 11 (424–374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic (N = 28) or planktonic (N = 31) stable oxygen isotope curves to a common time-frame and subjected 48 of them to an Empirical Orthogonal Function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~ 410 kyr. The second EOF, which explained 19% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~ 398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3–6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties 〉 1 °C. In order to assess the effect of orbital forcing on MIS11 SST trends, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with CCSM3 (Community Climate System Model, version 3) runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-08
    Description: Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralisation of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We take advantage of this natural experiment and investigate the reaction of calcification intensity, expressed as size-normalized weight (SNW), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observe a significant relationship between SNW and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at comparable conditions during the present day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-23
    Description: Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralization of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We took advantage of this natural experiment and investigated the reaction of calcification intensity, expressed as mean area density (MAD), of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka) in a sediment core from the Levantine Basin. We observed a significant relationship between MAD and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface-dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at similar conditions during the present-day. These results indicate that the high-salinity environment of the glacial Mediterranean Sea prior to sapropel deposition induced a~more intense calcification, whereas the freshwater injection to the surface waters associated with sapropel deposition inhibited calcification. The results are robust to changes in carbonate preservation and collectively imply that changes in normalized shell weight in planktonic Foraminifera should reflect mainly abiotic forcing.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Climate of the Past Discussions, 9(1), pp. 837-890, ISSN: 1814-9359
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...