ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 2658-2662 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Erbium is incorporated in crystalline silicon during molecular beam epitaxy on Si(100) at 600 °C, either in vacuum (6×10−11 mbar) or in an O2 ambient (4×10−10 mbar). Strong Er segregation takes place during growth in vacuum, and only 23% of the total deposited Er is incorporated in the epitaxial layer. Films grown in an O2 ambient show no Er segregation, and an Er concentration of 1.5×1019 Er/cm3 is incorporated in the crystal. The O content is 4×1019 O/cm3. Photoluminescence spectra taken at 10 K show the characteristic intra-4f luminescence of Er3+ at 1.54 μm for both samples, grown with and without O2. Differences found in the spectral shape indicate a difference in the local environment (presumably O coordination) of Er for the two cases. The O codoped film shows a 7 times higher Er luminescence peak intensity than the film grown without O. This is due to the higher incorporated Er concentration as well as an increased luminescence efficiency (lifetime without O: 0.33 ms, with O: 1.81 ms). The Er excitation efficiency is lower in the O codoped film than in the O-undoped film, which is attributed to the lower minority carrier lifetime in the O-doped material. Thermal annealing of the O codoped film at 1000 °C increases the excitation efficiency and hence the Er luminescence intensity. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 2642-2650 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The photoluminescence of erbium-doped semi-insulating polycrystalline and amorphous silicon containing 30 at. % oxygen is studied. The films were deposited on single-crystal Si substrates by chemical vapor deposition, implanted with 500 keV Er to fluences ranging from 0.05 to 6×1015 ions/cm2, and annealed at 300–1000 °C. Upon optical pumping near 500 nm, the samples show room-temperature luminescence around 1.54 μm due to intra-4f transitions in Er3+, excited by photogenerated carriers. The strongest luminescence is obtained after 400 °C annealing. Two classes of Er3+ can be distinguished, characterized by luminescence lifetimes of 170 and 800 μs. The classes are attributed to Er3+ in Si-rich and in O-rich environments. Photoluminescence excitation spectroscopy on a sample with 1×1015 Er/cm2 shows that ∼2% of the implanted Er is optically active. No quenching of the Er luminescence efficiency is observed between 77 K and room temperature in this Si-based semiconductor. The internal quantum efficiency for the excitation of Er3+ via photogenerated carriers is 10−3 at room temperature. A model is presented which explains the luminescence data in terms of trapping of electrical carriers at localized Er-related defects, and subsequent energy transfer to Er3+ ions, which can then decay by emission of 1.5 μm photons. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 2160-2162 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: 1.54 μm Er3+ photoluminescent and waveguiding properties of erbium-doped silicon-rich silicon oxide (SRSO) are investigated. Optimum Er3+ luminescence was obtained after an anneal of at least 5 min at 950 °C, and at least 1 at. % excess silicon in SRSO was necessary for the excitation of erbium to be dominated by carriers. The refractive index and the bulk waveguide loss of erbium-doped SRSO film with 0.1 at. % erbium and 1 at. % excess silicon after the optimal anneal treatment was 1.4817 and 4.0 dB/cm, respectively. Fabrication of an erbium-doped SRSO strip waveguide using the standard Si processing techniques and the guiding of internal 1.54 μm Er3+ emission by such a strip waveguide are demonstrated. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 2709-2711 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The exciton–erbium coupling and the excitation dynamics of Er3+ in erbium-doped silicon-rich silicon oxide are investigated using time-resolved measurements of Er3+ luminescence. The dependence of the Er3+ luminescence on the pump power and duration indicates that the exciton–erbium coupling is dominant over carrier–exciton coupling. The results further support the idea that the luminescent Er3+ ions are not in the Si nanoclusters but in the interface region surrounding the nanoclusters. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 4568-4570 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Optical gain at 1.54 μm in erbium-doped silicon-rich silicon oxide (SRSO) is demonstrated. Er-doped SRSO thin film was fabricated by electron-cyclotron resonance enhanced chemical vapor deposition of silicon suboxide with concurrent sputtering of erbium followed by a 5 min anneal at 1000 °C. Ridge-type single mode waveguides were fabricated by wet chemical etching. Optical gain of 4 dB/cm of an externally coupled signal at 1.54 μm is observed when the Er is excited via carriers generated in the Si nanoclusters by the 477 nm line of an Ar laser incident on the top of the waveguide at a pump power of 1.5 W cm−2. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 3956-3958 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Crystal silicon grains with grain sizes in excess of 10 μm and orientation control over all three directions were produced by depositing an amorphous silicon thin film on a cold-rolled and annealed nickel tape and annealing at 600 °C for 2 h. The needle-like morphology of the grains indicated that the crystallization was mediated by NiSi2. All grains had their [110] axis about 21° off the surface normal. Furthermore, nearly all of them had the same rotation about the [110] axis except for presence of twins and/or type A–B formations. Despite the use of the nickel substrate, the Ni concentration within the Si film was below the detection limit of energy-dispersive x-ray spectroscopy (1019 cm−3). This low-Ni contamination level is attributed to the presence of an oxide layer between the Ni substrate and the Si film. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 1573-1575 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The 1.54 μm Er3+ photoluminescent properties of erbium-doped Si/SiO2 superlattices are investigated. Two superlattice films, one with erbium in Si layers and the other with erbium in SiO2 layers, were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiH4 and O2 with cosputtering of erbium and subsequent rapid thermal anneal. Both display Er3+ luminescence, but it is stronger with longer luminescent lifetime and less temperature quenching when erbium is in the SiO2 layer. The results demonstrate that by using quantum structures, nonradiative deexcitation of Er3+ may be suppressed, and that carrier recombination events, which excite Er3+ ions, may be physically separated from Er atoms and still lead to an efficient Er3+ luminescence. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 3647-3649 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of hydrogenation on the room-temperature 1.54 μm Er3+ photoluminescent properties of erbium-doped silicon-rich silicon oxide thin films is investigated. Two samples with 7 and 1 at. % excess silicon and 0.4 at. % erbium were prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition of SiH4 and O2 with cosputtering of erbium and subsequent rapid thermal anneal at 900 °C. Hydrogenation by exposure to D plasma doubles the 1.54 μm Er3+ luminescence intensity from the high excess silicon content sample but halves that from the low excess silicon content sample. The lifetimes and excitation power dependence of Er+ luminescence show that hydrogenation primarily affects the active erbium fraction, increasing it in case of the high excess silicon sample but decreasing it in case of the low excess silicon content sample. With proper treatments, Er3+ luminescence lifetime of over 7 ms is obtained. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The composition dependence of room temperature 1.54 μm Er3+ photoluminescence of erbium-doped silicon:oxygen thin films produced by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH4 and O2 with concurrent sputtering of erbium is investigated. The Si:O ratio was varied from 3:1 to 1:2 and the annealing temperature was varied from 500 to 900 °C. The most intense Er3+ luminescence is observed from the sample with a Si:O ratio of 1:1.2 after a 900 °C anneal and the formation of silicon nanoclusters embedded in the SiO2 matrix. The high active erbium fraction, efficient excitation via carriers, and high luminescence efficiency due to the high quality SiO2 matrix are identified as key factors in producing the intense Er3+ luminescence. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 997-999 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Hydrogenated amorphous silicon thin films are doped with erbium by ion implantation. Room-temperature photoluminescence at 1.54 μm, due to an intra-4f transition in Er4+, is observed after thermal annealing at 300–400 °C. Excitation of Er3+ is shown to be mediated by photocarriers. The Er3+ luminescence intensity is quenched by a factor of 15 as the temperature is raised from 10 K to room temperature. Codoping with oxygen (1 at. %) reduces the luminescence quenching to a factor of 7. The quenching is well correlated with a decrease in luminescence lifetime, indicating that nonradiative decay of excited Er3+ is the dominant quenching mechanism as the temperature is increased. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...