ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-29
    Description: Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scherber, Christoph -- Eisenhauer, Nico -- Weisser, Wolfgang W -- Schmid, Bernhard -- Voigt, Winfried -- Fischer, Markus -- Schulze, Ernst-Detlef -- Roscher, Christiane -- Weigelt, Alexandra -- Allan, Eric -- Bessler, Holger -- Bonkowski, Michael -- Buchmann, Nina -- Buscot, Francois -- Clement, Lars W -- Ebeling, Anne -- Engels, Christof -- Halle, Stefan -- Kertscher, Ilona -- Klein, Alexandra-Maria -- Koller, Robert -- Konig, Stephan -- Kowalski, Esther -- Kummer, Volker -- Kuu, Annely -- Lange, Markus -- Lauterbach, Dirk -- Middelhoff, Cornelius -- Migunova, Varvara D -- Milcu, Alexandru -- Muller, Ramona -- Partsch, Stephan -- Petermann, Jana S -- Renker, Carsten -- Rottstock, Tanja -- Sabais, Alexander -- Scheu, Stefan -- Schumacher, Jens -- Temperton, Vicky M -- Tscharntke, Teja -- England -- Nature. 2010 Nov 25;468(7323):553-6. doi: 10.1038/nature09492. Epub 2010 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Georg-August-University Gottingen, Department of Crop Sciences, Agroecology, Grisebachstrasse 6, 37077 Gottingen, Germany. christoph.scherber@agr.uni-goettingen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981010" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Models, Biological ; *Plant Physiological Phenomena ; Population Density
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-09
    Description: The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Handa, I Tanya -- Aerts, Rien -- Berendse, Frank -- Berg, Matty P -- Bruder, Andreas -- Butenschoen, Olaf -- Chauvet, Eric -- Gessner, Mark O -- Jabiol, Jeremy -- Makkonen, Marika -- McKie, Brendan G -- Malmqvist, Bjorn -- Peeters, Edwin T H M -- Scheu, Stefan -- Schmid, Bernhard -- van Ruijven, Jasper -- Vos, Veronique C A -- Hattenschwiler, Stephan -- England -- Nature. 2014 May 8;509(7499):218-21. doi: 10.1038/nature13247.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919 Route de Mende, 34293 Montpellier, France [2] Departement des Sciences Biologiques, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec H3C 3P8, Canada. ; Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. ; Nature Conservation and Plant Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands. ; 1] Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Dubendorf, Switzerland [2] Institute of Integrative Biology (IBZ), ETH Zurich, 8092 Zurich, Switzerland. ; Georg August University Gottingen, J.F. Blumenbach Institute of Zoology and Anthropology, Berliner Strasse 28, 37073 Gottingen, Germany. ; 1] Universite de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 Route de Narbonne, 31062 Toulouse Cedex, France [2] CNRS, EcoLab, 118 Route de Narbonne, 31062 Toulouse Cedex, France. ; 1] Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Dubendorf, Switzerland [2] Institute of Integrative Biology (IBZ), ETH Zurich, 8092 Zurich, Switzerland [3] Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhutte 2, 16775 Stechlin, Germany [4] Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587 Berlin, Germany. ; 1] Department of Ecological Science, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands [2] Climate Change Programme, Finnish Environment Institute, PO Box 140, 00251 Helsinki, Finland. ; 1] Department of Ecology and Environmental Science, Umea University, 90187 Umea, Sweden [2] Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, PO Box 7050, 75007 Uppsala, Sweden. ; Deceased. ; Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; Institute of Evolutionary Biology and Environmental Studies & Zurich-Basel Plant Science Center, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. ; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS, 1919 Route de Mende, 34293 Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805346" target="_blank"〉PubMed〈/a〉
    Keywords: Arctic Regions ; *Biodiversity ; Carbon/metabolism ; *Carbon Cycle ; *Ecosystem ; Nitrogen/metabolism ; Nitrogen Cycle ; Plants/metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0929-1393
    Keywords: Aspen forest ; Bacterial/fungal ratio ; Carbon mineralization ; Dendrobaena octaedra ; Microbial biomass ; Nutrient cycling ; Pine forest
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Soil Biology and Biochemistry 25 (1993), S. 1703-1711 
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 230-234 
    ISSN: 1432-0789
    Keywords: Earthworm casts ; Microbial respiration ; Microbial biomass ; Nitrogen ; Phosphorus ; Aporrectodea caliginosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Microbial respiration, microbial biomass and nutrient requirements of the microflora (C, N, P) were studied in the food substrate (soil taken from the upper 3 cm of the mineral soil of a beech wood on limestone), the burrow walls and the casts of the earthworm Aporrectodea caliginosa (Savigny). The passage of the soil through the gut caused an increase in soil microbial respiration of about 90% over a 4-week period. Microbial biomass was increased only in freshly deposited casts and decreased in aging faeces to a level about 10% lower than in soil. Microbial respiration of the burrow walls was only increased over a shorter period (about 2 weeks). The microflora of the soil and the burrow walls was limited by P, whereas in earthworm casts, microbial growth was limited by the amount of available C. In aging faeces the P requirement of the microflora increased and approached that of the soil. Immobilization of phosphate in earthworm casts is probably caused by mainly abiotic processes. C mineralization by soil microflora fertilized with glucose and P was limited by N, except in freshly deposited casts. Ammonium, not nitrate, was responsible for this process. N dynamics in earthworm casts are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 327-332 
    ISSN: 1432-0789
    Keywords: Litter decomposition ; Succession ; Microbial biomass ; Microbial respioration ; Microbial nutrient status
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass, microbial respiration, metabolic quotient (qCO2), Cmic/Corg ratio and nutrient status of the microflora was investigated in different layers of an aspen (Populus tremuloides Michx.) and pine forest (Pinus contorta Loud.) in southwest Alberta, Canada. Changes in these parameters with soil depth were assumed to reflect successional changes in aging litter materials. The microbial nutrient status was investigated by analysing the respiratory response of glucose and nutrient (N and P) supplemented microorganisms. A strong decline in qCO2 with soil depth indicated a more efficient C use by microorganisms in later stages of decay in both forests. Cmic/Corg ratio also declined in the aspen forest with soil depth but in the pine forest it was at a maximum in the mineral soil layer. Microbial nutrient status in aspen leaf litter and pine needle litter indicated N limitation or high N demand, but changes in microbial nutrient status with soil depth differed strongly between both forests. In the aspen forest N deficiency appeared to decline in later stages of decay whereas P deficiency increased. In contrast, in the pine forest microbial growth was restricted mainly by N availability in each of the layers. Analysis of the respiratory response of CNP-supplemented microorganisms indicated that growth ability of microorganisms is related to the fungal-bacterial ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0789
    Keywords: Key wordsFagus sylvatica ; Urtica dioica ; Nitrate leaching ; Forest ; Lumbricidae ; Decomposition ; Mineralization ; Octolasion lacteum ; Litter ; CO2 production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of leaf litter of beech (Fagus sylvatica L.) and stinging nettles (Urtica dioica L.) and of the endogeic earthworm species Octolasion lacteum (Örley) on carbon turnover and nutrient dynamics in soil of three beechwood sites on a basalt hill (Hesse, Germany) were investigated in a laboratory experiment lasting for about 1 year. The sites were located along a gradient from basalt (upper part of the hill) to limestone (lower part of the hill) with an intermediate site in between (transition zone). At the intermediate site U. dioica dominated in the understory whereas at the other sites Mercurialis perennis L. was most abundant. The amount and composition of organic matter was similar in soil of the basalt (carbon content 5.9%, C/N ratio 13.8) and intermediate site (carbon content 5.6%, C/N ratio 14.3) but the soil of the intermediate site produced more CO2 (in total +17.5%) and more nitrogen (as nitrate) was leached from this soil (in total +55.6%). It is concluded that the soil of the intermediate site contains a large mobile carbon and nitrogen pool and the formation of this pool is ascribed to the input of U. dioica litter. Leaf litter of U. dioica strongly increased NO3 –-N leaching immediately after the litter had been added, whereas nitrogen was immobilized due to addition of beech litter. Despite the very fast initial decomposition of nettle litter, the increase in CO2 production due to this litter material was only equivalent to 20.1% of the amount of carbon added with the nettle litter; the respective value for beech litter was 34.8%. Earthworms altered the time course of carbon and nitrogen mineralization in each of the treatments. In general, earthworms strongly increased mineralization of nitrogen but this effect was less pronounced in soil of the intermediate site (treatments without litter), which is ascribed to a depleted physically protected nitrogen and carbon pool. In contrast, their effect on the total amount of nitrogen mobilized from nettle litter was small. Earthworms significantly reduced CO2 production from soil of the intermediate site (treatments without litter) and it is concluded that earthworm activity contributes to the restoration of the depleted physically protected carbon pool at this site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Key words Soil fauna ; Trophic structure ; Detritivores ; Predators ; 15N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The structure of the soil food web in two beech (Fagus sylvatica) forests, the Göttinger Wald and the Solling forest (Northern Germany), was investigated using variations in tissue 15N concentrations of animal species or taxa. The Göttinger Wald is located on a limestone plateau and characterized by mull humus with high macrofauna activity, particularly of Lumbricidae, Diplopoda and Isopoda. In contrast, the Solling forest is located on a sandstone mountain range and characterized by moder humus. The soil fauna of this forest is dominated by mesofauna, particularly by Collembola, Enchytraeidae and Oribatida. In June 1995 soil fauna was sampled using heat extraction. Three soil layers were analysed at each of the sites. 15N/14N ratios of bulk material increased strongly with soil depth in both forests. This also applied to the water-soluble fraction at the Göttinger Wald, but not at the Solling. Generally, the water-soluble fraction was more enriched in 15N than the bulk materials. For most animals studied 15N/14N ratios varied little with soil depth. In both forests soil animals could be classified either as saprophages, including microphytophages, or predators. On average, the δ15N of predatory taxa (Chilopoda, Araneida, Gamasina, Staphylinidae) exceeded that of saprophagous or microphytophagous taxa (Lumbricidae, Isopoda, Diplopoda, Collembola, Oribatida, Enchytraeidae) by 4.4 and 3.9‰ for the Göttinger Wald and the Solling, respectively. We assume that most of the saprophagous or microphytophagous taxa studied consist of primary and secondary decomposers and hypothesize that predators prey more on secondary than primary decomposers. Generally, average δ15N values differed little between saprophagous (Lumbricidae, Diplopoda, Isopoda) and microphytophagous taxa (Collembola, Oribatida). The variations in δ15N values of species within these taxa consistently exceeded the variation between them, indicating that the species of each of these taxa form a continuum from primary to secondary decomposers. Also, variations in δ15N values within predatory taxa in most cases exceeded that between taxa excluding top predators like Sorex. We conclude that using higher taxonomic units in soil food web analysis is problematic and in general not consistent with nature. Higher taxonomic units may only be useful for depicting very general trophic groupings such as predators or microbi-detritivores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 72 (1987), S. 197-201 
    ISSN: 1432-1939
    Keywords: Earthworms ; Nitrogen dynamics ; Nitrogen net mineralization ; Beech wood ; Field calculation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The influence of earthworms (Aporrectodea caliginosa (Savigny) and Lumbricus castaneus (Savigny)) on the rate of nitrogen net mineralization of the soil was studied in the laboratory and in the field. The additional mineralization of nitrogen cause by the burrowing activity of the substrat feeding earthworm A. caliginosa (N L )was directly correlated to the biomass of the lumbricids independently of their number. A rise in temperature caused an exponential increase in N L values. The Q 10 value of this process (2.18) was found to be much higher than that of the nitrogen mineralization without earthworms (Q 10=1.22). At 15°C the N L value caused by A. caliginosa was calculated to be about 250 μg N g-1 fresh body wt d-1. Using the experimentally determined exponential relationship between temperature and N L values, the additional nitrogen mineralization caused by a population of A. caliginosa in a beechwood on limestone was calculated to be 4.23 kg ha-1 a-1. In contrast to A. caliginosa the litter dwelling species L. castaneus lost considerable amounts of biomass (56%) during the 4 week incubation period. Only 1/3 of the nitrogen equivalent to the weight loss of the animals was recovered in the mineral nitrogen pool. The addition of litter (old beech leaf litter, freshly fallen beech and ash leaf litter) had a pronounced effect on both nitrogen net mineralization and N L values of the soil. Presence of old beech leaves caused an increase in both values, wheres the other litter types effected a decrease in nitrogen net mineralization. Fragmented ash litter was found to have the most distinct effect on N L values (-69%) and nitrogen net mineralization (-74%).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...