ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Temperate forests are affected by a wide variety of environmental factors that stem from human industrial and agricultural activities. In the north-eastern US, important change agents include tropospheric ozone, atmospheric nitrogen deposition, elevated CO2, and historical human land use. Although each of these has received attention for its effects on forest carbon dynamics, integrated analyses that examine their combined effects are rare. To examine the relative importance of all of these factors on current forest growth and carbon balances, we included them individually and in combination in a forest ecosystem model that was applied over the period of 1700–2000 under different scenarios of air pollution and land use history.Results suggest that historical increases in CO2 and N deposition have stimulated forest growth and carbon uptake, but to different degrees following agriculture and timber harvesting. These differences resulted from the effects of each land use scenario on soil C and N pools and on the resulting degree of growth limitations by carbon vs. nitrogen. Including tropospheric ozone in the simulations offset a substantial portion of the increases caused by CO2 and N deposition. This result is particularly relevant given that ozone pollution is widespread across much of the world and because broad-scale spatial patterns of ozone are coupled with patterns of nitrogen oxide emissions. This was demonstrated across the study region by a significant correlation between ozone exposure and rates of N deposition and suggests that the reduction of N-induced carbon sinks by ozone may be a common phenomenon in other regions.Collectively, the combined effects of all physical and chemical factors we addressed produced growth estimates that were surprisingly similar to estimates obtained in the absence of any form of disturbance. The implication of this result is that intact forests may show relatively little evidence of altered growth since preindustrial times despite substantial changes in their physical and chemical environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Estimation of leaf photosynthetic rate (A) from leaf nitrogen content (N) is both conceptually and numerically important in models of plant, ecosystem, and biosphere responses to global change. The relationship between A and N has been studied extensively at ambient CO2 but much less at elevated CO2. This study was designed to (i) assess whether the A–N relationship was more similar for species within than between community and vegetation types, and (ii) examine how growth at elevated CO2 affects the A–N relationship. Data were obtained for 39 C3 species grown at ambient CO2 and 10 C3 species grown at ambient and elevated CO2. A regression model was applied to each species as well as to species pooled within different community and vegetation types. Cluster analysis of the regression coefficients indicated that species measured at ambient CO2 did not separate into distinct groups matching community or vegetation type. Instead, most community and vegetation types shared the same general parameter space for regression coefficients. Growth at elevated CO2 increased photosynthetic nitrogen use efficiency for pines and deciduous trees. When species were pooled by vegetation type, the A–N relationship for deciduous trees expressed on a leaf-mass basis was not altered by elevated CO2, while the intercept increased for pines. When regression coefficients were averaged to give mean responses for different vegetation types, elevated CO2 increased the intercept and the slope for deciduous trees but increased only the intercept for pines. There were no statistical differences between the pines and deciduous trees for the effect of CO2. Generalizations about the effect of elevated CO2 on the A–N relationship, and differences between pines and deciduous trees will be enhanced as more data become available.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Leaf 15N signature is a powerful tool that can provide an integrated assessment of the nitrogen (N) cycle and whether it is influenced by rising atmospheric CO2 concentration. We tested the hypothesis that elevated CO2 significantly changes foliage δ15N in a wide range of plant species and ecosystem types. This objective was achieved by determining the δ15N of foliage of 27 field-grown plant species from six free-air CO2 enrichment (FACE) experiments representing desert, temperate forest, Mediterranean-type, grassland prairie, and agricultural ecosystems. We found that within species, the δ15N of foliage produced under elevated CO2 was significantly lower (P〈0.038) compared with that of foliage grown under ambient conditions. Further analysis of foliage δ15N by life form and growth habit revealed that the CO2 effect was consistent across all functional groups tested. The examination of two chaparral shrubs grown for 6 years under a wide range of CO2 concentrations (25–75 Pa) also showed a significant and negative correlation between growth CO2 and leaf δ15N. In a select number of species, we measured bulk soil δ15N at a depth of 10 cm, and found that the observed depletion of foliage δ15N in response to elevated CO2 was unrelated to changes in the soil δ15N. While the data suggest a strong influence of elevated CO2 on the N cycle in diverse ecosystems, the exact site(s) at which elevated CO2 alters fractionating processes of the N cycle remains unclear. We cannot rule out the fact that the pattern of foliage δ15N responses to elevated CO2 reported here resulted from a general drop in δ15N of the source N, caused by soil-driven processes. There is a stronger possibility, however, that the general depletion of foliage δ15N under high CO2 may have resulted from changes in the fractionating processes within the plant/mycorrhizal system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 7 (2001), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Temperature responses of rates of respiratory CO2 efflux from plants, soils, and ecosystems are frequently modelled using exponential functions with a constant Q10 near 2.0 (fractional change in rate with a 10 °C increase in temperature). However, we present evidence that Q10 declines with short-term increases in temperature in a predictable manner across diverse plant taxa. Thus, models using a constant Q10 are biased, and use of a temperature-corrected Q10 may improve the accuracy of modelled respiratory CO2 efflux in plants and ecosystems in response to temperature and predicted global climate changes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The response of respiration to temperature in plants can be considered at both short- and long-term temporal scales. Short-term temperature responses are not well described by a constant Q10 of respiration, and longer-term responses often include acclimation. Despite this, many carbon balance models use a static Q10 of respiration to describe the short-term temperature response and ignore temperature acclimation.We replaced static respiration parameters in the ecosystem model photosynthesis and evapo-transpiration (PnET) with a temperature-driven basal respiration algorithm (Rdacclim) that accounts for temperature acclimation, and a temperature-variable Q10 algorithm (Q10var). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass- and area-based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration–photosynthesis ratios.The Rdacclim algorithm adjusted dark respiration downwards at temperatures above 18°C, and adjusted rates up at temperatures below 5°C. The Q10var algorithm adjusted dark respiration down at temperatures below 15°C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall-grass prairie site to 41% at a boreal coniferous site. The use of the Rdacclim and Q10var algorithms resulted in increases in predicted ANPP ranging from 18% at the tall-grass prairie site to 38% at a warm temperate hardwood forest site.The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over-predict respiration and subsequently under-predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature-sensitive Q10 have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The magnitude of changes in carboxylation capacity in dominant plant species under long-term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free-air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of −19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass-based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Three components of global change, elevated CO2, nitrogen addition, and decreased plant species richness (‘diversity’), increased the percent leaf area infected by fungi (pathogen load) for much to all of the plant community in one year of a factorial grassland experiment. Decreased plant diversity had the broadest effect, increasing pathogen load across the plant community. Decreased diversity increased pathogen load primarily by allowing remaining plant species to increase in abundance, facilitating spread of foliar fungal pathogens specific to each plant species. Changes in plant species composition also strongly influenced community pathogen load, with communities that lost less disease prone plant species increasing more in pathogen load. Elevated CO2 increased pathogen load of C3 grasses, perhaps by decreasing water stress, increasing leaf longevity, and increasing photosynthetic rate, all of which can promote foliar fungal disease. Decreased plant diversity further magnified the increase in C3 grass pathogen load under elevated CO2. Nitrogen addition increased pathogen load of C4 grasses by increasing foliar nitrogen concentration, which can enhance pathogen infection, growth, and reproduction. Because changes in foliar fungal pathogen load can strongly influence grassland ecosystem processes, our study suggests that increased pathogen load can be an important mechanism by which global change affects grassland ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 7 (2001), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We measured soil CO2 flux over 19 sampling periods that spanned two growing seasons in a grassland Free Air Carbon dioxide Enrichment (FACE) experiment that factorially manipulated three major anthropogenic global changes: atmospheric carbon dioxide (CO2) concentration, nitrogen (N) supply, and plant species richness. On average, over two growing seasons, elevated atmospheric CO2 and N fertilization increased soil CO2 flux by 0.57 µmol m−2 s−1 (13% increase) and 0.37 µmol m−2 s−1 (8% increase) above average control soil CO2 flux, respectively. Decreases in planted diversity from 16 to 9, 4 and 1 species decreased soil CO2 flux by 0.23, 0.41 and 1.09 µmol m−2 s−1 (5%, 8% and 21% decreases), respectively. There were no statistically significant pairwise interactions among the three treatments. During 19 sampling periods that spanned two growing seasons, elevated atmospheric CO2 increased soil CO2 flux most when soil moisture was low and soils were warm. Effects on soil CO2 flux due to fertilization with N and decreases in diversity were greatest at the times of the year when soils were warm, although there were no significant correlations between these effects and soil moisture. Of the treatments, only the N and diversity treatments were correlated over time; neither were correlated with the CO2 effect. Models of soil CO2 flux will need to incorporate ecosystem CO2 and N availability, as well as ecosystem plant diversity, and incorporate different environmental factors when determining the magnitude of the CO2, N and diversity effects on soil CO2 flux.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...