ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-12-11
    Description: Neurofibromatosis type 1 (NF1) is a prevalent familial cancer syndrome resulting from germ line mutations in the NF1 tumor suppressor gene. Hallmark features of the disease are the development of benign peripheral nerve sheath tumors (neurofibromas), which can progress to malignancy. Unlike humans, mice that are heterozygous for a mutation in Nf1 do not develop neurofibromas. However, as described here, chimeric mice composed in part of Nf1-/- cells do, which demonstrates that loss of the wild-type Nf1 allele is rate-limiting in tumor formation. In addition, mice that carry linked germ line mutations in Nf1 and p53 develop malignant peripheral nerve sheath tumors (MPNSTs), which supports a cooperative and causal role for p53 mutations in MPNST development. These two mouse models provide the means to address fundamental aspects of disease development and to test therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cichowski, K -- Shih, T S -- Schmitt, E -- Santiago, S -- Reilly, K -- McLaughlin, M E -- Bronson, R T -- Jacks, T -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2172-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Center for Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10591652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chimera ; *Disease Models, Animal ; Female ; *Genes, Neurofibromatosis 1 ; Genes, p53 ; Germ-Line Mutation ; Humans ; Loss of Heterozygosity ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; Nerve Sheath Neoplasms/*genetics/*pathology ; Nerve Tissue Proteins/analysis/physiology ; Neurofibromatosis 1/*genetics/*pathology ; Neurofibromin 1 ; Proteins/analysis/physiology ; S100 Proteins/analysis ; Schwann Cells/chemistry/ultrastructure ; Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-30
    Description: Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6 (refs 6-8). The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelish, Henry E -- Liau, Brian B -- Nitulescu, Ioana I -- Tangpeerachaikul, Anupong -- Poss, Zachary C -- Da Silva, Diogo H -- Caruso, Brittany T -- Arefolov, Alexander -- Fadeyi, Olugbeminiyi -- Christie, Amanda L -- Du, Karrie -- Banka, Deepti -- Schneider, Elisabeth V -- Jestel, Anja -- Zou, Ge -- Si, Chong -- Ebmeier, Christopher C -- Bronson, Roderick T -- Krivtsov, Andrei V -- Myers, Andrew G -- Kohl, Nancy E -- Kung, Andrew L -- Armstrong, Scott A -- Lemieux, Madeleine E -- Taatjes, Dylan J -- Shair, Matthew D -- CA66996/CA/NCI NIH HHS/ -- F31 CA180419/CA/NCI NIH HHS/ -- P01 CA066996/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- R01 CA170741/CA/NCI NIH HHS/ -- T32 GM08759/GM/NIGMS NIH HHS/ -- UL1 TR001082/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Oct 8;526(7572):273-6. doi: 10.1038/nature14904. Epub 2015 Sep 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Chemistry and Biochemistry, University of Colorado, Campus Box 596, Boulder, Colorado 80303, USA. ; Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Division of Hematology/Oncology, Children's Hospital, Boston, Massachusetts 02215, USA. ; Proteros Biostructures GmbH, Bunsenstrasse 7a, D-82152 Martinsried, Germany. ; Max-Planck-Institut fur Biochemie, Am Kloperspitz 18, D-82152 Martinsried, Germany. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Cancer Biology and Genetics Program and Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA. ; Bioinfo, Plantagenet, Ontario K0B 1L0, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416749" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-19
    Description: Acute exposure to ionizing radiation can cause lethal damage to the gastrointestinal (GI) tract, a condition called the GI syndrome. Whether the target cells affected by radiation to cause the GI syndrome are derived from the epithelium or endothelium and whether the target cells die by apoptosis or other mechanisms are controversial issues. Studying mouse models, we found that selective deletion of the proapoptotic genes Bak1 and Bax from the GI epithelium or from endothelial cells did not protect mice from developing the GI syndrome after sub-total-body gamma irradiation. In contrast, selective deletion of p53 from the GI epithelium, but not from endothelial cells, sensitized irradiated mice to the GI syndrome. Transgenic mice overexpressing p53 in all tissues were protected from the GI syndrome after irradiation. These results suggest that the GI syndrome is caused by the death of GI epithelial cells and that these epithelial cells die by a mechanism that is regulated by p53 but independent of apoptosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897160/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897160/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirsch, David G -- Santiago, Philip M -- di Tomaso, Emmanuelle -- Sullivan, Julie M -- Hou, Wu-Shiun -- Dayton, Talya -- Jeffords, Laura B -- Sodha, Pooja -- Mercer, Kim L -- Cohen, Rhianna -- Takeuchi, Osamu -- Korsmeyer, Stanley J -- Bronson, Roderick T -- Kim, Carla F -- Haigis, Kevin M -- Jain, Rakesh K -- Jacks, Tyler -- K08 CA 114176/CA/NCI NIH HHS/ -- K08 CA114176/CA/NCI NIH HHS/ -- K08 CA114176-05/CA/NCI NIH HHS/ -- P01 CA080124/CA/NCI NIH HHS/ -- P01 CA080124-01A1/CA/NCI NIH HHS/ -- P01 CA80124/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- RC1 AI078521/AI/NIAID NIH HHS/ -- RC1 AI078521-01/AI/NIAID NIH HHS/ -- RC1-AI078521/AI/NIAID NIH HHS/ -- U19-AI06775/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):593-6. doi: 10.1126/science.1166202. Epub 2009 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019247" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Death ; Epithelial Cells/cytology/physiology/radiation effects ; Gamma Rays/*adverse effects ; Gene Deletion ; Genes, p53 ; Intestinal Diseases/etiology/pathology/*physiopathology ; Intestinal Mucosa/pathology/physiopathology/*radiation effects ; Intestine, Small/pathology/physiopathology/*radiation effects ; Mesoderm/cytology ; Mice ; Mice, Transgenic ; Models, Biological ; Radiation Dosage ; Radiation Injuries/etiology/pathology/*physiopathology ; Tumor Suppressor Protein p53/*physiology ; bcl-2 Homologous Antagonist-Killer Protein/genetics/metabolism ; bcl-2-Associated X Protein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-23
    Description: Cancer is a multistep process that involves mutations and other alterations in oncogenes and tumour suppressor genes. Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers. However, the determination of which mutations are causally related to tumorigenesis remains a major challenge. Here we describe a novel CRISPR/Cas9-based approach for rapid functional investigation of candidate genes in well-established autochthonous mouse models of cancer. Using a Kras(G12D)-driven lung cancer model, we performed functional characterization of a panel of tumour suppressor genes with known loss-of-function alterations in human lung cancer. Cre-dependent somatic activation of oncogenic Kras(G12D) combined with CRISPR/Cas9-mediated genome editing of tumour suppressor genes resulted in lung adenocarcinomas with distinct histopathological and molecular features. This rapid somatic genome engineering approach enables functional characterization of putative cancer genes in the lung and other tissues using autochthonous mouse models. We anticipate that this approach can be used to systematically dissect the complex catalogue of mutations identified in cancer genome sequencing studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292871/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292871/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez-Rivera, Francisco J -- Papagiannakopoulos, Thales -- Romero, Rodrigo -- Tammela, Tuomas -- Bauer, Matthew R -- Bhutkar, Arjun -- Joshi, Nikhil S -- Subbaraj, Lakshmipriya -- Bronson, Roderick T -- Xue, Wen -- Jacks, Tyler -- K99 CA169512/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA169512/CA/NCI NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 18;516(7531):428-31. doi: 10.1038/nature13906. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] Tufts University, Boston, Massachusetts 02115, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337879" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/*genetics/pathology ; Animals ; *Caspase 9 ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Disease Models, Animal ; Genes, Tumor Suppressor ; *Genetic Engineering ; Genome/*genetics ; Humans ; Lentivirus/genetics ; Lung Neoplasms/*genetics/pathology ; Mice ; Mice, Inbred C57BL ; Models, Genetic ; Mutation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-08
    Description: Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS and inactivation of the p53 pathway, using conditional alleles in mice. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras(LSL-G12D/+);p53(flox/flox) mice initiates lung adenocarcinoma development. Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga2. Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same tumour type substantiate its role as a dual function lineage factor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3088778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winslow, Monte M -- Dayton, Talya L -- Verhaak, Roel G W -- Kim-Kiselak, Caroline -- Snyder, Eric L -- Feldser, David M -- Hubbard, Diana D -- DuPage, Michel J -- Whittaker, Charles A -- Hoersch, Sebastian -- Yoon, Stephanie -- Crowley, Denise -- Bronson, Roderick T -- Chiang, Derek Y -- Meyerson, Matthew -- Jacks, Tyler -- K08 CA154784/CA/NCI NIH HHS/ -- K99-CA151968/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-36/CA/NCI NIH HHS/ -- P30 CA014051-37/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30 CA014051-39/CA/NCI NIH HHS/ -- P30 CA014051-40/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA151968/CA/NCI NIH HHS/ -- R01 CA109038/CA/NCI NIH HHS/ -- T32-HL007627/HL/NHLBI NIH HHS/ -- U01 CA084306/CA/NCI NIH HHS/ -- U01 CA084306-11/CA/NCI NIH HHS/ -- U01 CA084306-12/CA/NCI NIH HHS/ -- U01 CA084306-13/CA/NCI NIH HHS/ -- U01-CA84306/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 5;473(7345):101-4. doi: 10.1038/nature09881. Epub 2011 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21471965" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/genetics/physiopathology ; Animals ; Cell Differentiation ; Cell Line, Tumor ; Disease Models, Animal ; Down-Regulation ; *Gene Expression Regulation, Neoplastic ; HMGA2 Protein/genetics ; Humans ; Lung Neoplasms/genetics/physiopathology ; Mice ; Nuclear Proteins/*genetics/*metabolism ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-14
    Description: The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the 'queen', who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat's exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Eun Bae -- Fang, Xiaodong -- Fushan, Alexey A -- Huang, Zhiyong -- Lobanov, Alexei V -- Han, Lijuan -- Marino, Stefano M -- Sun, Xiaoqing -- Turanov, Anton A -- Yang, Pengcheng -- Yim, Sun Hee -- Zhao, Xiang -- Kasaikina, Marina V -- Stoletzki, Nina -- Peng, Chunfang -- Polak, Paz -- Xiong, Zhiqiang -- Kiezun, Adam -- Zhu, Yabing -- Chen, Yuanxin -- Kryukov, Gregory V -- Zhang, Qiang -- Peshkin, Leonid -- Yang, Lan -- Bronson, Roderick T -- Buffenstein, Rochelle -- Wang, Bo -- Han, Changlei -- Li, Qiye -- Chen, Li -- Zhao, Wei -- Sunyaev, Shamil R -- Park, Thomas J -- Zhang, Guojie -- Wang, Jun -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- AG038004/AG/NIA NIH HHS/ -- CA080946/CA/NCI NIH HHS/ -- R01 AG021518/AG/NIA NIH HHS/ -- R01 AG021518-10/AG/NIA NIH HHS/ -- R01 AG038004/AG/NIA NIH HHS/ -- R01 AG038004-02/AG/NIA NIH HHS/ -- R01 CA080946/CA/NCI NIH HHS/ -- R01 CA080946-11/CA/NCI NIH HHS/ -- England -- Nature. 2011 Oct 12;479(7372):223-7. doi: 10.1038/nature10533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993625" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Aging/genetics ; Amino Acid Sequence ; Animals ; Body Temperature Regulation/genetics ; Carbon Dioxide/analysis/metabolism ; Circadian Rhythm/genetics ; Darkness ; Genes/genetics ; Genome/*genetics ; Genomic Instability/genetics ; Genomics ; Humans ; Ion Channels/genetics ; Longevity/*genetics/physiology ; Male ; Mitochondrial Proteins/genetics ; Mole Rats/*genetics/*physiology ; Molecular Sequence Data ; Mutagenesis/genetics ; Oxygen/analysis/metabolism ; Taste/genetics ; Transcriptome/genetics ; Visual Perception/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-04-29
    Description: The in vivo function of murine granulocyte-macrophage colony-stimulating factor (GM-CSF) was investigated in mice, carrying a null allele of the GM-CSF gene, that were generated by gene targeting techniques in embryonic stem cells. Although steady-state hematopoiesis was unimpaired in homozygous mutant animals, all animals developed the progressive accumulation of surfactant lipids and proteins in the alveolar space, the defining characteristic of the idiopathic human disorder pulmonary alveolar proteinosis. Extensive lymphoid hyperplasia associated with lung airways and blood vessels was also found, yet no infectious agents could be detected. These results demonstrate that GM-CSF is not an essential growth factor for basal hematopoiesis and reveal an unexpected, critical role for GM-CSF in pulmonary homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dranoff, G -- Crawford, A D -- Sadelain, M -- Ream, B -- Rashid, A -- Bronson, R T -- Dickersin, G R -- Bachurski, C J -- Mark, E L -- Whitsett, J A -- HL37569/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 29;264(5159):713-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8171324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchoalveolar Lavage Fluid/chemistry ; Granulocyte-Macrophage Colony-Stimulating Factor/genetics/*physiology ; Hematopoiesis ; Homeostasis ; Humans ; Hyperplasia ; Lung/*pathology ; Mice ; Mice, Inbred C57BL ; Mutation ; Proteolipids/metabolism ; Pulmonary Alveolar Proteinosis/metabolism/*pathology ; Pulmonary Alveoli/*metabolism/pathology ; Pulmonary Surfactant-Associated Proteins ; Pulmonary Surfactants/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-04-29
    Description: Variants of the Dearing strain of reovirus type 3 with antigenically altered hemagglutinin proteins are much less neurovirulent than the parental virus. When injected intracerebrally into mice these variants infected a subset of the brain neurons that were infected by the parental virus. When injected intraperitoneally, the variants did not spread to the brain. These results indicate that minor modifications of the reovirus hemagglutinin dramatically alter the ability of the virus to spread into and injure the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spriggs, D R -- Bronson, R T -- Fields, B N -- NS-16998-01/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1983 Apr 29;220(4596):505-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6301010" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology ; Brain/pathology ; Brain Diseases/*microbiology/pathology ; Hemagglutination Tests ; Mammalian orthoreovirus 3/immunology/*pathogenicity ; Mice ; Reoviridae/*pathogenicity ; Reoviridae Infections/microbiology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0032-8332
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hematologic data gathered over a period of 4.8 years from 196 owl monkeys,Aotus trivirgatus, were analyzed to find if karyotypic differences existed. It was found that none of 30 animals of karyotypes K-I and K-VI developed hemolytic anemia, whereas 46 of 99 animals of K-II, K-III and K-IV did (p〈0.005). Analysis of hemograms of normal owl monkeys showed that mean percent eosinophils varied markedly, K-I monkeys having lowest counts, 3.2%, and K-VI animals having the highest, 33%. These results establish that idiopathic eosinophilia and hemolytic anemia in this species are probably unrelated but susceptibility to both has a strong genetic component.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1777
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Neuromuscular degeneration, nmd, is a spontaneous autosomal recessive mutation in the mouse producing progressive hindlimb impairment caused by spinal muscular atrophy. We used an intersubspecific intercross between B6.BKs-nmd 2J/+ and Mus musculus castaneus (CAST/Ei) to map the nmd mutation to mouse Chromosome (Chr) 19 with the most likely gene order: nmd-(D19Se12, Pygm)-Cntf-Pomc2-D19Mit16-Cyp2c-Got1. nmd maps near muscle deficient, mdf, and has a very similar clinical phenotype, but allele tests and histological differences suggest that nmd is a distinct mutation at a different locus. Although closely linked, nmd recombined with the candidate genes muscle glycogen phosphorylase, Pygm, and ciliary neurotrophic factor, Cntf.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...