ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Physical geography. ; Atmospheric science. ; Earth System Sciences. ; Atmospheric Science.
    Description / Table of Contents: Preface -- Chapter 1. Scientific Background (J. Jones) -- Chapter 2. General Background (J. Jones, G. Guerova, J. Douša, G. Dick, S. de Haan, E. Pottiaux, O. Bock, R. Pacione and H. Vedel) -- Chapter 3. Advanced GNSS Processing Techniques (Working Group 1) (Y. Altiner, F. Alshawaf, J. Bosy, H. Brenot, E. Brockmann, R. Brožková, Z. Deng, G. Dick, W. Ding, J. Douša, K. Eben, M. Eliaš, R. Fernandes, Ganas, Geiger, G. Guerova, T. Hadaś, Hill, P. Hordyniec, F. Hurter, J. Jones, M. Kačmařík, K. Kaźmierski, J. Kaplon, P. Krč, Landskron, X. Li, Lu, J.P. Martins, G. Möller, L. Morel, G. Ófeigsson, R. Pacione, Pikridas, Pottiaux, J. Resler, W. Rohm, Sá, J. Sammer, T. Simeonov, W. Söhne, Stoycheva, Stürze, R. Szabolcs, N. Teferle, S. Thorsteinsson, P. Václavovic, H. Valentim, van Schaeybroeck, P. Viterbo, K. Wilgan, L. Yang, L. Zhao, N. Zinas and Zus) -- Chapter 4. Use of GNSS Tropospheric Products for High-Resolution, Rapid-Update NWP and Severe Weather Forecasting (Working Group 2) (J. S. Arriola, M. Bender, J. Berckmans, H. Brenot, C. Bruyninx, L. De Cruz, S. de Haan, G. Dick, N. Dymarska, K. Eben, G. Guerova, J. Jones, P. Krč, M. Lindskog, M. Mile, G. Möller, N. Penov, E. Pottiaux, J. Resler, W. Rohm, M. Slavchev, K. Stoev, Stoycheva, E. Trzcina and F. Zus) -- Chapter 5. Use of GNSS Tropospheric Products for Climate Monitoring (Working Group 3) (F. Ahmed, Araszkiewicz, Z. Bałdysz, K. Balidakis, Barroso, S. Bastin, S. Beirle, J. Berckmans, O. Bock, J. Böhm, J. Bogusz, M. Bos, E. Brockmann, M. Cadeddu, Chimani, J. Douša, G. Elgered, M. Eliaš, R. Fernandes, M. Figurski, E Fionda, M. Gruszczynska, G. Guerova, J. Guijarro, Hackman, R. Heinkelmann, J. Jones, S. Zengin Kazancı, Klos, Landskron, J.P. Martins, V. Mattioli, Mircheva, S. Nahmani, R T. Nilsson, T. Ning, Nykiel, R. Pacione, Parracho, E. Pottiaux, Ramos, P. Rebischung, Sá, Schuh, Stankunavicius, K. Stępniak, Valentim, R. Van Malderen, P. Viterbo, P. Willis and Xaver) -- Chapter 6. National Status Reports (Guergana Guerova) -- Chapter 7. STSM Reports (Guergana Guerova) -- Appendix.
    Abstract: The book (COST Action Final report) summarises the proceedings from COST Action ES1206. COST Action ES1206, Advanced GNSS Tropospheric Products for Severe Weather Events and Climate (GNSS4SWEC), was a 4-year project, running from 2013 to 2017, which coordinated new and improved capabilities from concurrent developments in GNSS, meteorological and climate communities. For the first time, the synergy of multi-GNSS constellations was used to develop new, more advanced tropospheric products, exploiting the full potential of multi-GNSS on a wide range of temporal and spatial scales - from real-time products monitoring and forecasting severe weather, to the highest quality post-processed products suitable for climate research. The Action also promoted the use of meteorological data as an input to real-time GNSS positioning, navigation, and timing services and has stimulated knowledge and data transfer throughout Europe and beyond. .
    Type of Medium: Online Resource
    Pages: XXI, 563 p. 290 illus., 270 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030139018
    DDC: 550
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-05
    Description: The present availability of 18+ years of GNSS data belonging to the EUREF Permanent Network (EPN, http://www.epncb.oma.be/) is a valuable database for the development of a climate data record of GNSS tropospheric products over Europe. This data record can be used as a reference for a variety of scientific applications (e.g. validation of regional numerical weather prediction reanalyses and climate model simulations) and has a high potential for monitoring trends and the variability in atmospheric water vapour. In the framework of the EPN-Repro2, the second reprocessing campaign of the EPN, five Analysis Centres homogenously reprocessed the EPN network for the period 1996–2014. A huge effort has been made to provide solutions that are the basis for deriving new coordinates, velocities and tropospheric parameters for the entire EPN. The individual contributions are then combined to provide the official EPN reprocessed products. This paper is focused on the EPN-Repro2 tropospheric product. The combined product is described along with its evaluation against radiosonde data and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-13
    Description: Data from global positioning system (GPS) ground-based receivers, ground-based microwave radiometers (MWRs), and radiosondes (RS) at two high-latitude sites were compared. At one site, the North Slope of Alaska (NSA), Barrow, Alaska (USA), the instruments were co-located, while at the other site, the second ARM Mobile Facility (AMF2), Hyytiälä, Finland, the GPS receiver was located about 20 km away from the MWRs and RS. Differences between the GPS-derived integrated water vapor (IWV) and the other three instruments were analyzed in terms of mean differences and standard deviation. A comparison of co-located and near-located independently calibrated instruments allowed us to isolate issues that may be specific to a single system and, to some extent, to isolate the effects of the distance between the GPS receiver and the remaining instruments. The results showed that at these two high-latitude sites, when the IWV was less than 15 kg/m2, the GPS agreed with other instruments within 0.5–0.7 kg/m2. When the variability of water vapor was higher, mostly in the summer months, the GPS agreed with other instruments within 0.8–1 kg/m2. The total random uncertainty between the GPS and the other systems was of the order of 0.6–1 kg/m2 and was the dominant effect when the IWV was higher than 15 kg/m2.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-29
    Description: In this work, we examine data from a Global Positioning System (GPS) ground-based receiver, two co-located ground-based microwave radiometers (MWRs), and radiosondes (RAOBs) to characterize the uncertainties associated with integrated water vapour (IWV) values estimated from the GPS in a sub-Arctic climate region. The experiment was carried out during the Biogenic Aerosols–Effects on Clouds and Climate research campaign conducted using the Atmospheric Radiation Measurement Program's second Mobile Facility (AMF2) in collaboration with the University of Helsinki. The GPS receiver was located about 20km away from the AMF2 instruments (radiometers and RAOB). The GPS data were processed in Precise Point Positioning mode using the state-of-the-art scientific software GIPSY-OASIS II. Differences between the GPS-derived IWV and that derived from the other three instruments are analysed in terms of bias, standard deviation, and root-mean-square error (RMSE). The availability of three co-located, independently calibrated systems (two MWRs and one RAOB) allows us to isolate issues that may be specific to a single system and to isolate the effects of the distance between the GPS receiver and the remaining instruments. The representativeness error due to the 20-km distance between the GPS and the other systems is of the order of 0.6–1.5kg/m2 and in this study is the dominant effect when the IWV is higher than 20kg/m2. The RMSE between the instruments shows that in the sub-Arctic region, when the IWV variability is less than 20kg/m2, the GPS agrees with other instruments to within 0.5kg/m2. When the variability of water vapour in the 20-km region is higher than 20kg/m2, mostly in the summer months, the GPS agrees with other instruments within 1–2kg/m2.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-29
    Description: The use of ground-based observations is suitable for the assessment of atmospheric water vapour in climate models. Global Navigation Satellite Systems (GNSS) provide information on the Integrated Water Vapour (IWV), at a high temporal and spatial resolution. We used IWV observations at 100 European GNSS sites to evaluate the regional climate model ALARO running at 20 km horizontal resolution and coupled to the land surface model SURFEX, driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data. The observations recorded in the selected stations span from 1996 to 2014 (with minimum 10 years) and were homogeneously reprocessed during the second reprocessing campaign of the EUREF Permanent Network (EPN Repro2). The outcome of the reprocessing was then used to compute IWV time series at these stations. The yearly cycle of the IWV for the 19-year period from 1996 to 2014 reveals that the model simulates well the seasonal variation. Although the model overestimates IWV during winter and spring, it is consistent with the driving field of ERA-Interim. However, the agreement with ERA-Interim is less in summer, when the model demonstrates an underestimation of the IWV. The model presents a cold and dry bias in summer that feedbacks to a lower evapotranspiration and results in too few water vapour. The spatial variability among the sites is high and shows a dependence on the altitude of the stations which is strongest in summer and by ALARO-SURFEX. The IWV diurnal cycle presents best results with ERA-Interim in the morning, whereas ALARO-SURFEX presents best results at midnight.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-08
    Description: Global navigation satellite systems (GNSSs) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago, and today it is a well-established field in both research and operation. This review covers the state of the art in GNSS meteorology in Europe. The advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring are discussed. The GNSS processing techniques and tropospheric products are reviewed. A summary of the use of the products for validation and impact studies with operational numerical weather prediction (NWP) models as well as very short weather prediction (nowcasting) case studies is given. Climate research with GNSSs is an emerging field of research, but the studies so far have been limited to comparison with climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 advanced global navigation satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC, http://gnss4swec.knmi.nl).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-23
    Description: The present availability of 18+ years of GNSS data belonging to the EUREF Permanent Network (EPN, http://www.epncb.oma.be/) is a valuable database for the development of a climate data record of GNSS tropospheric products over Europe. This data record can be used as a reference for a variety of scientific applications and has a high potential for monitoring trend and variability in atmospheric water vapour, improving the knowledge of climatic trends of atmospheric water vapour and being useful for regional Numerical Weather Prediction (NWP) reanalyses as well as climate model simulations. In the framework of the EPN-Repro2, the second reprocessing campaign of the EPN, five Analysis Centres homogenously reprocessed the EPN network for the period 1996–2014. A huge effort has been made for providing solutions that are the basis for deriving new coordinates, velocities and troposphere parameters for the entire EPN. The individual contributions are then combined in order to provide the official EPN reprocessed products. This paper is focused on the EPN Repro2 tropospheric product. The combined product is described along with its evaluation against radiosonde data and European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-06
    Description: Global Navigation Satellite Systems (GNSS) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60–70 % of atmospheric warming. In Europe, the application of GNSS in meteorology started roughly two decades ago and today it is a well-established research field. This review covers the state-of-the-art in GNSS meteorology in Europe. Discussed are the advances in GNSS processing for derivation of tropospheric products, application of GNSS tropospheric products in operational weather prediction and application of GNSS tropospheric products for climate monitoring. Reviewed are the GNSS processing techniques and tropospheric products. Given is a summary of the use of the products for validation and impact studies with operational Numerical Weather Prediction (NWP) models as well as very short weather prediction (nowcasting) case studies. Climate research with GNSS is an emerging field of research, the studies so far have been limited to comparison with the climate models and derivation of trends. More than 15 years of GNSS meteorology in Europe has already achieved outstanding cooperation between the atmospheric and geodetic communities. It is now feasible to develop next-generation GNSS tropospheric products and applications that can enhance the quality of weather forecasts and climate monitoring. This work is carried out within COST Action ES1206 "Advanced Global Navigation Satellite Systems tropospheric products for monitoring Severe Weather Events and Climate" (GNSS4SWEC, http://gnss4swec.knmi.nl ).
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...