ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Theory and experiments have shown that passive microwave radiometers can be used to measure soil moisture. However, the presence of a vegetative cover alters the measurement that might be obtained under bare conditions. Deterministically accounting for the effect of vegetation and developing algorithms for extracting soil moisture from observations of a vegetable-soil complex present significant obstacles to the practical use of this approach. The presence of a vegetation canopy reduces the sensitivity of passive microwave instruments to soil moisture variations. The reduction in sensitivity, as compared to a bare-soil relationship, increases as microwave frequency increases, implying that the longest wavelength sensors should provide the most information. Sensitivity also decreases as the amount of vegetative wet biomass increases for a given type of vegetation.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); 28; 978-980
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Remote Sensing of Environment (ISSN 0034-4257); 36; 129-136
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: New opportunities for large-scale soil moisture monitoring will emerge with the launch of two low frequency (L-band 1.4 GHz) radiometers: the Aquarius mission in 2009 and the Soil Moisture and Ocean Salinity (SMOS) mission in 2008. Soil moisture is an important land surface variable affecting water and heat exchanges between atmosphere, land surface and deeper ground water reservoirs. The data products from these sensors provide valuable information in a range of climate and hydrologic applications (e.g., nume~cal weather prediction, drought monitoring, flood forecasting, water resources management, etc.). This paper describes a unique data set that was collected during a field campaign at OPE^ (Optimizing Production Inputs for Economic and Environmental Enhancements) site in Beltsville, Maryland throughout the eompj2ete corn growing in 2002. This investigation describes a simple methodology to correct active microwave observations for vegetation effects, which could potentially be implemented in a global soil moisture monitoring algorithm. The methodology has been applied to radar observation collected during the entire corn growth season and validation against ground measurements showed that the top 5-cm soil moisture can be retrieved with an accuracy up to 0.033 [cu cm/cu cm] depending on the sensing configuration.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The encroachment of woody plants in grasslands across the Western U.S. will affect soil water availability by altering the contributions of evaporation (E) and transpiration (T) to total evapotranspiration (ET). To study this phenomenon, a network of flux stations is in place to measure ET in grass- and shrub-dominated ecosystems throughout the Western U.S. A method is described and tested here to partition the daily measurements of ET into E and T based on diurnal surface temperature variations of the soil and standard energy balance theory. The difference between the mid-afternoon and pre-dawn soil surface temperature, termed Apparent Thermal Inertia (I(sub A)), was used to identify days when E was negligible, and thus, ET=T. For other days, a three-step procedure based on energy balance equations was used to estimate Qe contributions of daily E and T to total daily ET. The method was tested at Walnut Gulch Experimental Watershed in southeast Arizona based on Bowen ratio estimates of ET and continuous measurements of surface temperature with an infrared thermometer (IRT) from 2004- 2005, and a second dataset of Bowen ratio, IRT and stem-flow gage measurements in 2003. Results showed that reasonable estimates of daily T were obtained for a multi-year period with ease of operation and minimal cost. With known season-long daily T, E and ET, it is possible to determine the soil water availability associated with grass- and shrub-dominated sites and better understand the hydrologic impact of regional woody plant encroachment.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: HYDROSTAR is a hybrid synthesis radiometer, intended for spaceborne applications, which employs a real aperture (waveguide stick antenna) for resolution along track and employs aperture synthesis to obtain resolution across track. This L-band system is an extension of the successful aircraft prototype, the Electronically Steered Thinned Array Radiometer (ESTAR). A proof-of-concept, full size system was constructed (45 wavelength in the synthesis direction) and subjected to extensive antenna pattern and associated microwave component measurements in an outdoor antenna test facility. HYDROSTAR employs a thinned array of 16 elements each 5.8 inches long in the along track dimension and spanning 9.5 inches across track. Each element is a narrow-wall shunt slot array with 36 slots. The polarization is linear (along-track). In the across track dimension, the antennas are deployed in a minimum redundancy array which has 90 independent baselines spaced in integer multiples of half a wavelength. The closest spacings used are for the first three elements at each end, which are spaced by only one-half wavelength. This study was intended to assess how closely each of 16 stick element patterns compare with their nominal values (as an individual, isolated radiator), when installed in their intended composite thinned array configuration. Extensive pattern measurements of the 16 elements that constitute the HYDROSTAR antenna subsystem were conducted to observe their relative features along the synthesis plane. Data was also collected for the mutual coupling between pairs of selected antennas. All antenna patterns had features different from that of an isolated element indicating some level of interaction among neighboring radiators. Those elements which had nearest neighbors at least five wavelengths away were located near the middle of the array. Their radiation patterns displayed sonic small, symmetric ripple across their full azimuth range. The patterns of elements that lie within 2.5 wavelengths of their neighbors showed stronger and asymmetric features. These are believed to be caused by mutual coupling among these structures. Evidence for this was seen when an antenna position was displaced by 0.05 wavelengths, Its pattern and those of its near neighbors were seen to change. Displacement within the plane of the array were observed to have different effects than displacements out-of-plane. A program of data analysis and theoretical development is in progress to provide a physical interpretation of the properties of these antenna patterns and to develop methods which can optimize the performance of this synthetic aperture imaging system. This includes compensation for pattern asymmetries and element position perturbation.
    Keywords: Communications and Radar
    Type: MicroCal Meeting; Oct 30, 2000 - Oct 31, 2000; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT solutions are required for proper representation of scattering within vegetation. In this paper, an expression for an effective albedo for the whole canopy including the ground is derived for use in the zero-order RT model-based SM retrieval. This effective albedo takes into account of all the processes taking place within the canopy, including multiple-scattering. This new formulation will be presented and its importance for microwave SM retrieval will be evaluated for corn canopies in conjunction with the detailed ground truth data obtained during the experiment at Alabama in 1998. Emphasis will be placed on examining how the radiometer response to SM is modified by the corn canopy scattering under different field conditions. A semi-empirical parameterization of the effective albedo will be investigated through analysis of SM and vegetation water content effects on the effective albedo.
    Keywords: Life Sciences (General)
    Type: GSFC.ABS.5484.2011 , 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MICRORAD 2012); Mar 05, 2012 - Mar 09, 2012; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: In this study, a new first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic r-co model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over moderately to densely vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. A first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. The new model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the i-w model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The new model is tested against 1.4 GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the T-w model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the angle and polarization of the microwave observation.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In this study, a first-order radiative transfer (RT) model is developed to more accurately account for vegetation canopy scattering by modifying the basic Tau-Omega model (the zero-order RT solution). In order to optimally utilize microwave radiometric data in soil moisture (SM) retrievals over vegetated landscapes, a quantitative understanding of the relationship between scattering mechanisms within vegetation canopies and the microwave brightness temperature is desirable. The first-order RT model is used to investigate this relationship and to perform a physical analysis of the scattered and emitted radiation from vegetated terrain. This model is based on an iterative solution (successive orders of scattering) of the RT equations up to the first order. This formulation adds a new scattering term to the . model. The additional term represents emission by particles (vegetation components) in the vegetation layer and emission by the ground that is scattered once by particles in the layer. The model is tested against 1.4-GHz brightness temperature measurements acquired over deciduous trees by a truck-mounted microwave instrument system called ComRAD in 2007. The model predictions are in good agreement with the data, and they give quantitative understanding for the influence of first-order scattering within the canopy on the brightness temperature. The model results show that the scattering term is significant for trees and modifications are necessary to the . model when applied to dense vegetation. Numerical simulations also indicate that the scattering term has a negligible dependence on SM and is mainly a function of the incidence angle and polarization of the microwave observation. Index Terms Emission,microwave radiometry, scattering, soil, vegetation.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.JA.5390.2011 , IEEE Transactions on Geoscience and Remote Sensing; 49; 9; 3167-3179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC.CP.4285.2011 , 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2010); Jul 25, 2010 - Jul 30, 2010; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...