ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-03
    Description: Oxygen deprivation followed by reoxygenation causes pathological responses in many disorders, including ischemic stroke, heart attacks, and reperfusion injury. Key aspects of ischemia-reperfusion can be modeled by a Caenorhabditis elegans behavior, the O2-ON response, which is suppressed by hypoxic preconditioning or inactivation of the O2-sensing HIF (hypoxia-inducible factor) hydroxylase EGL-9. From a genetic screen, we found that the cytochrome P450 oxygenase CYP-13A12 acts in response to the EGL-9-HIF-1 pathway to facilitate the O2-ON response. CYP-13A12 promotes oxidation of polyunsaturated fatty acids into eicosanoids, signaling molecules that can strongly affect inflammatory pain and ischemia-reperfusion injury responses in mammals. We propose that roles of the EGL-9-HIF-1 pathway and cytochrome P450 in controlling responses to reoxygenation after anoxia are evolutionarily conserved.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969381/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969381/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Dengke K -- Rothe, Michael -- Zheng, Shu -- Bhatla, Nikhil -- Pender, Corinne L -- Menzel, Ralph -- Horvitz, H Robert -- GM24663/GM/NIGMS NIH HHS/ -- R01 GM024663/GM/NIGMS NIH HHS/ -- R37 GM024663/GM/NIGMS NIH HHS/ -- T32 GM007484/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):554-8. doi: 10.1126/science.1235753. Epub 2013 Jun 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23811225" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Disease Models, Animal ; Eicosanoids/metabolism ; Evolution, Molecular ; Fatty Acids, Unsaturated/metabolism ; Hypoxia-Inducible Factor 1/*metabolism ; Oxygen/*metabolism ; Reperfusion Injury/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-18
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-03
    Description: Caenorhabditis elegans exhibits a diverse range of behaviors in response to bacteria. The presence of bacterial food influences C. elegans aerotaxis, aggregation, locomotion, and pathogen avoidance behaviors through the activity of the NPR-1 neuropeptide receptor. Here, we show that mucoid strains of bacteria that produce an exopolysaccharide matrix do not induce NPR-1–dependent behaviors. In the presence of mucoid strains of bacteria, the C. elegans laboratory wild-type (WT) strain N2 exhibits behaviors characteristic of wild isolates and mutants with reduced NPR-1 activity. Specifically, N2 exhibits lawn bordering and roaming behavior on mucoid nonpathogenic bacteria and loss of pathogen avoidance on mucoid Pseudomonas aeruginosa. Alginate biosynthesis by laboratory and clinical isolates of mucoid P. aeruginosa is necessary and sufficient to attenuate NPR-1–mediated behavior and it suppresses C. elegans pathogen avoidance behavior. Our data suggest that the specific interaction with nonmucoid bacteria induces NPR-1–dependent behaviors of C. elegans. These observations provide an example of how exopolysaccharide matrix biosynthesis by a community of bacteria may inhibit specific host responses to microbes.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...