ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Print ISSN: 1745-2473
    Electronic ISSN: 1745-2481
    Topics: Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-06-11
    Description: The spatially dependent de-excitation of a beam of metastable argon atoms, traveling through an optical standing wave, produced a periodic array of localized metastable atoms with position and momentum spreads approaching the limit stated by the Heisenberg uncertainty principle. Silicon and silicon dioxide substrates placed in the path of the atom beam were patterned by the metastable atoms. The de-excitation of metastable atoms upon collision with the surface promoted the deposition of a carbonaceous film from a vapor-phase hydrocarbon precursor. The resulting patterns were imaged both directly and after chemical etching. Thus, quantum-mechanical steady-state atom distributions can be used for sub-0.1-micrometer lithography.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson -- Thywissen -- Dekker -- Berggren -- Chu -- Younkin -- Prentiss -- New York, N.Y. -- Science. 1998 Jun 5;280(5369):1583-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9616117" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-09-05
    Description: The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a particular separation between energy levels. Although this technique has been successfully employed in a variety of physical systems, including natural and artificial atoms and molecules, its application is not universally straightforward and becomes extremely challenging for frequencies in the range of tens to hundreds of gigahertz. Here we introduce a complementary approach, amplitude spectroscopy, whereby a harmonic driving field sweeps an artificial atom through the avoided crossings between energy levels at a fixed frequency. Spectroscopic information is obtained from the amplitude dependence of the system's response, thereby overcoming many of the limitations of a broadband-frequency-based approach. The resulting 'spectroscopy diamonds', the regions in parameter space where transitions between specific pairs of levels can occur, exhibit interference patterns and population inversion that serve to distinguish the atom's spectrum. Amplitude spectroscopy provides a means of manipulating and characterizing systems over an extremely broad bandwidth, using only a single driving frequency that may be orders of magnitude smaller than the energy scales being probed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berns, David M -- Rudner, Mark S -- Valenzuela, Sergio O -- Berggren, Karl K -- Oliver, William D -- Levitov, Leonid S -- Orlando, Terry P -- England -- Nature. 2008 Sep 4;455(7209):51-7. doi: 10.1038/nature07262.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18769433" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-08-16
    Description: Self-assembling materials are the building blocks of bottom-up nanofabrication processes, but they need to be templated to impose long-range order and eliminate defects. In this work, the self-assembly of a thin film of a spherical-morphology block copolymer is templated using an array of nanoscale topographical elements that act as surrogates for the minority domains of the block copolymer. The orientation and periodicity of the resulting array of spherical microdomains are governed by the commensurability between the block copolymer period and the template period and is accurately described by a free-energy model. This method, which forms high-spatial-frequency arrays using a lower-spatial-frequency template, will be useful in nanolithography applications such as the formation of high-density microelectronic structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bita, Ion -- Yang, Joel K W -- Jung, Yeon Sik -- Ross, Caroline A -- Thomas, Edwin L -- Berggren, Karl K -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):939-43. doi: 10.1126/science.1159352.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18703736" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-09
    Description: The registration and alignment of a monolayer of microdomains in a self-assembled block copolymer thin film can be controlled by chemical or physical templating methods. Although planar patterns are useful for nanoscale device fabrication, three-dimensional multilevel structures are required for some applications. We found that a bilayer film of a cylindrical-morphology block copolymer, templated by an array of posts functionalized with a brush attractive to the majority block, can form a rich variety of three-dimensional structures consisting of cylinder arrays with controllable angles, bends, and junctions whose geometry is controlled by the template periodicity and arrangement. This technique allows control of microdomain patterns and the ability to route and connect microdomains in specific directions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tavakkoli K G, A -- Gotrik, K W -- Hannon, A F -- Alexander-Katz, A -- Ross, C A -- Berggren, K K -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1294-8. doi: 10.1126/science.1218437.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22679094" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-11-12
    Description: We demonstrate Mach-Zehnder-type interferometry in a superconducting flux qubit. The qubit is a tunable artificial atom, the ground and excited states of which exhibit an avoided crossing. Strongly driving the qubit with harmonic excitation sweeps it through the avoided crossing two times per period. Because the induced Landau-Zener transitions act as coherent beamsplitters, the accumulated phase between transitions, which varies with microwave amplitude, results in quantum interference fringes for n = 1 to 20 photon transitions. The generalization of optical Mach-Zehnder interferometry, performed in qubit phase space, provides an alternative means to manipulate and characterize the qubit in the strongly driven regime.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliver, William D -- Yu, Yang -- Lee, Janice C -- Berggren, Karl K -- Levitov, Leonid S -- Orlando, Terry P -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1653-7. Epub 2005 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA. oliver@ll.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16282527" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-09-01
    Description: Lithography can be performed with beams of neutral atoms in metastable excited states to pattern self-assembled monolayers (SAMs) of alkanethiolates on gold. An estimated exposure of a SAM of dodecanethiolate (DDT) to 15 to 20 metastable argon atoms per DDT molecule damaged the SAM sufficiently to allow penetration of an aqueous solution of ferricyanide to the surface of the gold. This solution etched the gold and transformed the patterns in the SAMs into structures of gold; these structures had edge resolution of less than 100 nanometers. Regions of SAMs as large as 2 square centimeters were patterned by exposure to a beam of metastable argon atoms. These observations suggest that this system may be useful in new forms of micro- and nanolithography.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berggren, K K -- Bard, A -- Wilbur, J L -- Gillaspy, J D -- Helg, A G -- McClelland, J J -- Rolston, S L -- Phillips, W D -- Prentiss, M -- Whitesides, G M -- 1-F32 GM16511-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 1;269(5228):1255-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652572" target="_blank"〉PubMed〈/a〉
    Keywords: Argon ; *Chemistry, Physical ; Ferricyanides ; *Gold ; Microscopy, Electron/instrumentation ; Physicochemical Phenomena ; *Sulfhydryl Compounds ; *Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-12-13
    Description: We demonstrated microwave-induced cooling in a superconducting flux qubit. The thermal population in the first-excited state of the qubit is driven to a higher-excited state by way of a sideband transition. Subsequent relaxation into the ground state results in cooling. Effective temperatures as low as approximately 3 millikelvin are achieved for bath temperatures of 30 to 400 millikelvin, a cooling factor between 10 and 100. This demonstration provides an analog to optical cooling of trapped ions and atoms and is generalizable to other solid-state quantum systems. Active cooling of qubits, applied to quantum information science, provides a means for qubit-state preparation with improved fidelity and for suppressing decoherence in multi-qubit systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valenzuela, Sergio O -- Oliver, William D -- Berns, David M -- Berggren, Karl K -- Levitov, Leonid S -- Orlando, Terry P -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1589-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology (MIT) Francis Bitter Magnet Laboratory, Cambridge, MA 02139, USA. sov@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158325" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 1261-1263 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This letter describes the formation of nanometer-scale features in a silicon substrate using a self-assembled monolayer (SAM) of octylsiloxane on silicon dioxide as a resist sensitive to a patterned beam of neutral cesium atoms. The mask that patterned the atomic beam was a silicon nitride membrane perforated with nm and μm scale holes, in contact with the substrate surface. In a two-step wet-chemical etching process, the pattern formed in the SAM was transferred first into the SiO2 layer and then into an underlying silicon substrate. This process demonstrated the formation of silicon features with diameter ∼60 nm. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This letter describes the fabrication of ∼80 nm structures in silicon, silicon dioxide, and gold substrates by exposing the substrates to a beam of metastable argon atoms in the presence of dilute vapors of trimethylpentaphenyltrisiloxane, the dominant constituent of diffusion pump oil used in these experiments. The atoms release their internal energy upon contacting the siloxanes physisorbed on the surface of the substrate, and this release causes the formation of a carbon-based resist. The atomic beam was patterned by a silicon nitride membrane, and the pattern formed in the resist material was transferred to the substrates by chemical etching. Simultaneous exposure of large areas (44 cm2) was also demonstrated. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...