ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suh, Jae Myoung -- Jonker, Johan W -- Ahmadian, Maryam -- Goetz, Regina -- Lackey, Denise -- Osborn, Olivia -- Huang, Zhifeng -- Liu, Weilin -- Yoshihara, Eiji -- van Dijk, Theo H -- Havinga, Rick -- Fan, Weiwei -- Yin, Yun-Qiang -- Yu, Ruth T -- Liddle, Christopher -- Atkins, Annette R -- Olefsky, Jerrold M -- Mohammadi, Moosa -- Downes, Michael -- Evans, Ronald M -- P01 HL088093/HL/NHLBI NIH HHS/ -- P42 ES010337/ES/NIEHS NIH HHS/ -- R01 DE013686/DE/NIDCR NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Apr 16;520(7547):388. doi: 10.1038/nature14304. Epub 2015 Mar 4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25739500" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-22
    Description: Fibroblast growth factor 1 (FGF1) is an autocrine/paracrine regulator whose binding to heparan sulphate proteoglycans effectively precludes its circulation. Although FGF1 is known as a mitogenic factor, FGF1 knockout mice develop insulin resistance when stressed by a high-fat diet, suggesting a potential role in nutrient homeostasis. Here we show that parenteral delivery of a single dose of recombinant FGF1 (rFGF1) results in potent, insulin-dependent lowering of glucose levels in diabetic mice that is dose-dependent but does not lead to hypoglycaemia. Chronic pharmacological treatment with rFGF1 increases insulin-dependent glucose uptake in skeletal muscle and suppresses the hepatic production of glucose to achieve whole-body insulin sensitization. The sustained glucose lowering and insulin sensitization attributed to rFGF1 are not accompanied by the side effects of weight gain, liver steatosis and bone loss associated with current insulin-sensitizing therapies. We also show that the glucose-lowering activity of FGF1 can be dissociated from its mitogenic activity and is mediated predominantly via FGF receptor 1 signalling. Thus we have uncovered an unexpected, neomorphic insulin-sensitizing action for exogenous non-mitogenic human FGF1 with therapeutic potential for the treatment of insulin resistance and type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suh, Jae Myoung -- Jonker, Johan W -- Ahmadian, Maryam -- Goetz, Regina -- Lackey, Denise -- Osborn, Olivia -- Huang, Zhifeng -- Liu, Weilin -- Yoshihara, Eiji -- van Dijk, Theo H -- Havinga, Rick -- Fan, Weiwei -- Yin, Yun-Qiang -- Yu, Ruth T -- Liddle, Christopher -- Atkins, Annette R -- Olefsky, Jerrold M -- Mohammadi, Moosa -- Downes, Michael -- Evans, Ronald M -- DE13686/DE/NIDCR NIH HHS/ -- DK-033651/DK/NIDDK NIH HHS/ -- DK-063491/DK/NIDDK NIH HHS/ -- DK-074868/DK/NIDDK NIH HHS/ -- DK057978/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- ES010337/ES/NIEHS NIH HHS/ -- HL088093/HL/NHLBI NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P01 DK054441/DK/NIDDK NIH HHS/ -- P01 DK074868/DK/NIDDK NIH HHS/ -- P01 HL088093/HL/NHLBI NIH HHS/ -- P01-DK054441-14A1/DK/NIDDK NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- P42 ES010337/ES/NIEHS NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R37 DK033651/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- T32 DK007494/DK/NIDDK NIH HHS/ -- T32-DK-007494/DK/NIDDK NIH HHS/ -- U54 HD012303/HD/NICHD NIH HHS/ -- U54-HD-012303-25/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 18;513(7518):436-9. doi: 10.1038/nature13540. Epub 2014 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA [2]. ; 1] Center for Liver, Digestive and Metabolic Diseases, Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands [2]. ; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA. ; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA. ; Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Diego, La Jolla, California 92093, USA. ; 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. ; Center for Liver, Digestive and Metabolic Diseases, Departments of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands. ; The Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, New South Wales 2145, Australia. ; 1] Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA [2] Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043058" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Body Weight/drug effects ; Diabetes Mellitus, Experimental/drug therapy/metabolism ; Diabetes Mellitus, Type 2/metabolism ; Diet, High-Fat ; Dose-Response Relationship, Drug ; Fibroblast Growth Factor 1/administration & dosage/adverse effects/*pharmacology ; Glucose/*metabolism ; Glucose Tolerance Test ; Humans ; Insulin/*metabolism ; Insulin Resistance ; Liver/drug effects/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Mitogens/pharmacology ; Muscle, Skeletal/drug effects/metabolism ; Receptor, Fibroblast Growth Factor, Type 1/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-24
    Description: Although feast and famine cycles illustrate that remodelling of adipose tissue in response to fluctuations in nutrient availability is essential for maintaining metabolic homeostasis, the underlying mechanisms remain poorly understood. Here we identify fibroblast growth factor 1 (FGF1) as a critical transducer in this process in mice, and link its regulation to the nuclear receptor PPARgamma (peroxisome proliferator activated receptor gamma), which is the adipocyte master regulator and the target of the thiazolidinedione class of insulin sensitizing drugs. FGF1 is the prototype of the 22-member FGF family of proteins and has been implicated in a range of physiological processes, including development, wound healing and cardiovascular changes. Surprisingly, FGF1 knockout mice display no significant phenotype under standard laboratory conditions. We show that FGF1 is highly induced in adipose tissue in response to a high-fat diet and that mice lacking FGF1 develop an aggressive diabetic phenotype coupled to aberrant adipose expansion when challenged with a high-fat diet. Further analysis of adipose depots in FGF1-deficient mice revealed multiple histopathologies in the vasculature network, an accentuated inflammatory response, aberrant adipocyte size distribution and ectopic expression of pancreatic lipases. On withdrawal of the high-fat diet, this inflamed adipose tissue fails to properly resolve, resulting in extensive fat necrosis. In terms of mechanisms, we show that adipose induction of FGF1 in the fed state is regulated by PPARgamma acting through an evolutionarily conserved promoter proximal PPAR response element within the FGF1 gene. The discovery of a phenotype for the FGF1 knockout mouse establishes the PPARgamma-FGF1 axis as critical for maintaining metabolic homeostasis and insulin sensitization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3358516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jonker, Johan W -- Suh, Jae Myoung -- Atkins, Annette R -- Ahmadian, Maryam -- Li, Pingping -- Whyte, Jamie -- He, Mingxiao -- Juguilon, Henry -- Yin, Yun-Qiang -- Phillips, Colin T -- Yu, Ruth T -- Olefsky, Jerrold M -- Henry, Robert R -- Downes, Michael -- Evans, Ronald M -- DK057978/DK/NIDDK NIH HHS/ -- DK062434/DK/NIDDK NIH HHS/ -- DK063491/DK/NIDDK NIH HHS/ -- DK090962/DK/NIDDK NIH HHS/ -- HL105278/HL/NHLBI NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 DK063491/DK/NIDDK NIH HHS/ -- R01 DK033651/DK/NIDDK NIH HHS/ -- R01 HL105278/HL/NHLBI NIH HHS/ -- R01 HL105278-21/HL/NHLBI NIH HHS/ -- R24 DK090962/DK/NIDDK NIH HHS/ -- R24 DK090962-02/DK/NIDDK NIH HHS/ -- R37 DK033651/DK/NIDDK NIH HHS/ -- R37 DK057978/DK/NIDDK NIH HHS/ -- R37 DK057978-34/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 17;485(7398):391-4. doi: 10.1038/nature10998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22522926" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism/pathology ; Animals ; Base Sequence ; Cell Size/drug effects ; Diabetes Mellitus, Experimental/chemically induced/genetics/pathology ; Diet, High-Fat/adverse effects ; Fibroblast Growth Factor 1/deficiency/*genetics/*metabolism ; *Homeostasis/drug effects ; Humans ; Inflammation/genetics ; Insulin/metabolism ; Insulin Resistance ; Intra-Abdominal Fat/drug effects/*metabolism/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Necrosis/enzymology ; PPAR gamma/*metabolism ; Promoter Regions, Genetic/genetics ; Response Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-09-20
    Description: White adipose (fat) tissues regulate metabolism, reproduction, and life span. Adipocytes form throughout life, with the most marked expansion of the lineage occurring during the postnatal period. Adipocytes develop in coordination with the vasculature, but the identity and location of white adipocyte progenitor cells in vivo are unknown. We used genetically marked mice to isolate proliferating and renewing adipogenic progenitors. We found that most adipocytes descend from a pool of these proliferating progenitors that are already committed, either prenatally or early in postnatal life. These progenitors reside in the mural cell compartment of the adipose vasculature, but not in the vasculature of other tissues. Thus, the adipose vasculature appears to function as a progenitor niche and may provide signals for adipocyte development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Wei -- Zeve, Daniel -- Suh, Jae Myoung -- Bosnakovski, Darko -- Kyba, Michael -- Hammer, Robert E -- Tallquist, Michelle D -- Graff, Jonathan M -- 1R01DK064261/DK/NIDDK NIH HHS/ -- 1R01DK066556/DK/NIDDK NIH HHS/ -- R01 DK064261/DK/NIDDK NIH HHS/ -- R01 DK064261-01/DK/NIDDK NIH HHS/ -- R01 DK064261-02/DK/NIDDK NIH HHS/ -- R01 DK064261-03/DK/NIDDK NIH HHS/ -- R01 DK064261-04/DK/NIDDK NIH HHS/ -- R01 DK064261-05/DK/NIDDK NIH HHS/ -- R01 DK066556/DK/NIDDK NIH HHS/ -- R01 DK066556-01/DK/NIDDK NIH HHS/ -- R01 DK066556-02/DK/NIDDK NIH HHS/ -- R01 DK066556-03/DK/NIDDK NIH HHS/ -- R01 DK066556-04/DK/NIDDK NIH HHS/ -- R01 DK066556-05/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):583-6. doi: 10.1126/science.1156232. Epub 2008 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18801968" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, White/*cytology/metabolism ; Adipogenesis ; Adipose Tissue/*blood supply/cytology ; Animals ; Antigens, CD/metabolism ; Blood Vessels/*cytology ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Cells, Cultured ; Doxycycline/pharmacology ; Gene Expression Profiling ; Mice ; Mice, Transgenic ; Multipotent Stem Cells/*cytology/metabolism ; PPAR gamma/genetics/metabolism ; Stromal Cells/*cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 55 (1999), S. 2088-2090 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Applied crystallography online 21 (1988), S. 521-523 
    ISSN: 1600-5767
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: The rationale for a convenient crystal orientation method for oscillation photography is presented. The method involves the measurement of the deviations of reflection spots from the equator. These deviations are added or subtracted to give the horizontal and vertical arc corrections.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Applied crystallography online 22 (1989), S. 183-184 
    ISSN: 1600-5767
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: In the paper by Suh, Suh, Ko, Aoki & Yamazaki [J. Appl. Cryst. (1988). 21, 521–523], the penultimate sentence of the Concluding remarks section is in error. The correct sentence is Subtract the deviation in the bottom half from the deviation in the top half to give the correction for the vertical arc: if the result is + Δν mm, rotate the vertical arc by Δv° clockwise, and by Δν° anticlockwise in the case of −Δν mm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2015-07-15
    Description: Mitochondria are highly adaptable organelles that can facilitate communication between tissues to meet the energetic demands of the organism. However, the mechanisms by which mitochondria can nonautonomously relay stress signals remain poorly understood. Here we report that mitochondrial mutations in the young, preprogeroid polymerase gamma mutator (POLG) mouse produce a...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-02-23
    Description: The ligand-dependent competing actions of nuclear receptor (NR)-associated transcriptional corepressor and coactivator complexes allow for the precise regulation of NR-dependent gene expression in response to both temporal and environmental cues. Here we report the mouse model termed silencing mediator of retinoid and thyroid hormone receptors (SMRT)mRID1 in which targeted disruption of the first receptor interaction domain (RID) of the nuclear corepressor SMRT disrupts interactions with a subset of NRs and leads to diet-induced superobesity associated with a depressed respiratory exchange ratio, decreased ambulatory activity, and insulin resistance. Although apparently normal when chow fed, SMRTmRID1 mice develop multiple metabolic dysfunctions when challenged by a high-fat diet, manifested by marked lipid accumulation in white and brown adipose tissue and the liver. The increased weight gain of SMRTmRID1 mice on a high-fat diet occurs predominantly in fat with adipocyte hypertrophy evident in both visceral and s.c. depots. Importantly, increased inflammatory gene expression was detected only in the visceral depots. SMRTmRID1 mice are both insulin-insensitive and refractory to the glucose-lowering effects of TZD and AICAR. Increased serum cholesterol and triglyceride levels were observed, accompanied by increased leptin and decreased adiponectin levels. Aberrant storage of lipids in the liver occurred as triglycerides and cholesterol significantly compromised hepatic function. Lipid accumulation in brown adipose tissue was associated with reduced thermogenic capacity and mitochondrial biogenesis. Collectively, these studies highlight the essential role of NR corepressors in maintaining metabolic homeostasis and describe an essential role for SMRT in regulating the progression, severity, and therapeutic outcome of metabolic diseases.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...