ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-10-13
    Description: The forte of catalytic antibodies has resided in the control of the ground-state reaction coordinate. A principle and method are now described in which antibodies can direct the outcome of photophysical and photochemical events that take place on excited-state potential energy surfaces. The key component is a chemically reactive optical sensor that provides a direct report of the dynamic interplay between protein and ligand at the active site. To illustrate the concept, we used a trans-stilbene hapten to elicit a panel of monoclonal antibodies that displayed a range of fluorescent spectral behavior when bound to a trans-stilbene substrate. Several antibodies yielded a blue fluorescence indicative of an excited-state complex or "exciplex" between trans-stilbene and the antibody. The antibodies controlled the isomerization coordinate of trans-stilbene and dynamically coupled this manifold with an active-site residue. A step was taken toward the use of antibody-based photochemical sensors for diagnostic and clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simeonov, A -- Matsushita, M -- Juban, E A -- Thompson, E H -- Hoffman, T Z -- Beuscher, A E 4th -- Taylor, M J -- Wirsching, P -- Rettig, W -- McCusker, J K -- Stevens, R C -- Millar, D P -- Schultz, P G -- Lerner, R A -- Janda, K D -- AI39089/AI/NIAID NIH HHS/ -- GM43858/GM/NIGMS NIH HHS/ -- P01CA27489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Oct 13;290(5490):307-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute and the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11030644" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry ; Antibodies, Monoclonal/*chemistry ; Binding Sites ; Binding Sites, Antibody ; Chemistry, Physical ; Crystallography, X-Ray ; *Fluorescence ; Haptens ; Ligands ; Microscopy, Fluorescence ; Models, Chemical ; Models, Molecular ; Photochemistry ; Physicochemical Phenomena ; Spectrometry, Fluorescence ; Stereoisomerism ; Stilbenes/*chemistry/*immunology ; Temperature ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-11
    Description: Molecular dynamics occurring in the earliest stages following photo-induced charge transfer were investigated. Femtosecond time-resolved absorption anisotropy measurements on [Ru(bpy)(3)](2+), where bpy is 2,2'-bipyridine, reveal a time dependence in nitrile solutions attributed to initial delocalization of the excited state over all three ligands followed by charge localization onto a single ligand. The localization process is proposed to be coupled to nondiffusive solvation dynamics. In contrast, measurements sampling population dynamics show spectral evolution associated with wave packet motion on the excited state surface that is independent of solvent. The results therefore reveal two important contributions to the evolution of charge transfer states in condensed phase, one that is strongly coupled to the surrounding environment and another that follows a potential internal to the molecule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeh -- Shank -- McCusker -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):935-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937993" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCusker, J K -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1599-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. mccusker@cem.msu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533464" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-01-03
    Description: Time-resolved absorption spectroscopy on the femtosecond time scale has been used to monitor the earliest events associated with excited-state relaxation in tris-(2,2'-bipyridine)ruthenium(II). The data reveal dynamics associated with the temporal evolution of the Franck-Condon state to the lowest energy excited state of this molecule. The process is essentially complete in approximately 300 femtoseconds after the initial excitation. This result is discussed with regard to reformulating long-held notions about excited-state relaxation, as well as its implication for the importance of non-equilibrium excited-state processes in understanding and designing molecular-based electron transfer, artificial photosynthetic, and photovoltaic assemblies in which compounds of this class are currently playing a key role.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Damrauer -- Cerullo -- Yeh -- Boussie -- Shank -- McCusker -- New York, N.Y. -- Science. 1997 Jan 3;275(5296):54-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉N. H. Damrauer, T. R. Boussie, J. K. McCusker, Department of Chemistry, University of California, Berkeley, CA 94720, USA. G. Cerullo and A. Yeh, Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. C. V. Shank, Department of Chemistry, University of California, Berkeley, CA 94720, and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8974388" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-12-24
    Description: Conservation of angular momentum is a familiar tenet in science but has seldom been invoked to understand (or predict) chemical processes. We have developed a general formalism based on Wigner's original ideas concerning angular momentum conservation to interpret the photo-induced reactivity of two molecular donor-acceptor assemblies with physical properties synthetically tailored to facilitate intramolecular energy transfer. Steady-state and time-resolved spectroscopic data establishing excited-state energy transfer from a rhenium(I)-based charge-transfer state to a chromium(III) acceptor can be fully accounted for by Forster theory, whereas the corresponding cobalt(III) adduct does not undergo an analogous reaction despite having a larger cross-section for dipolar coupling. Because this pronounced difference in reactivity is easily explained within the context of the angular momentum conservation model, this relatively simple construct may provide a means for systematizing a broad range of chemical reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Dong -- Knight, Troy E -- McCusker, James K -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1684-7. doi: 10.1126/science.1211459.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22194572" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Description: 〈p〉Transition metal–based chromophores play a central role in a variety of light-enabled chemical processes ranging from artificial solar energy conversion to photoredox catalysis. The most commonly used compounds include elements from the second and third transition series (e.g., ruthenium and iridium), but their Earth-abundant first-row analogs fail to engage in photoinduced electron transfer chemistry despite having virtually identical absorptive properties. This disparate behavior stems from fundamental differences in the nature of 3d versus 4d and 5d orbitals, resulting in an inversion in the compounds’ excited-state electronic structure and undermining the ability of compounds with first-row elements to engage in photoinduced electron transfer. This Review will survey the key experimental observations establishing this difference in behavior, discuss the underlying reasons for this phenomenon, and briefly summarize efforts that are currently under way to alter this paradigm and open the door to new opportunities for using Earth-abundant materials for photoinduced electron transfer chemistries.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-30
    Description: As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologie...
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...