ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    Tsukuba : National Research Institute for Earth Science and Disaster Prevention
    Associated volumes
    Call number: M 19.95290
    In: Technical note of the National Research Institute for Earth Science and Disaster Prevention
    Type of Medium: Monograph available for loan
    Pages: 1 v. (various pagings) , ill., maps (some col.) , 1 CD-ROM (digital ; 4 3/4 in.) , 30 cm.
    Series Statement: Technical note of the National Research Institute for Earth Science and Disaster Prevention 234
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 10 (2001), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract In situ stress was measured close to the fault associated with the 1995 Kobe Earthquake (Hyogo-ken Nanbu earthquake; January 1995; M7.2) using the hydraulic fracturing method. The measurements were made approximately 2 years after the earthquake. The measured points were approximately 40 m from the fault plane at depths of about 1500 m. The maximum and the minimum horizontal compressive stresses were 45 MPa and 31 MPa, respectively. The maximum compressive stress and the maximum shear stress are very small in comparison with those of other seismically active areas. The azimuth of the maximum horizontal compressive stress was estimated from the observed azimuths of well bore breakouts at depths between 1400 m and 1600 m and was found to be N135° (clockwise). The maximum stress axis is perpendicular to the fault strike, N45°. These features are interpreted in terms of a small frictional coefficient of the fault. The shear stress on the fault was released and dropped almost to zero during the earthquake and it has not yet recovered. Zero shear stress on the fault plane resulted from the perpendicular orientation of one of the principal stress to the fault plane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 10 (2001), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Terrestrial heat flow at Hirabayashi in Awaji Island, south-west Japan, was investigated using the deep borehole penetrating through the Nojima Fault, which was activated during the 1995 Hyogo-ken Nanbu earthquake, by measuring the thermal conductivity of basement rocks. Using the temperature logging data, the value of terrestrial heat flow in Hirabayashi was found to be 56.6 ± 5.2 mW/m2. The relationship between cut-off depth of aftershocks of the Hyogo-ken Nanbu earthquake in Hirabayashi and terrestrial heat flow are discussed. The cut-off depth roughly corresponds to isotherms of 300°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 10 (2001), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Three boreholes, 1001 m, 1313 m and 1838 m deep, were drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) in the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake to investigate tectonic and material characteristics near and in active faults. Using these boreholes, an integrated study of the in situ stress, heat flow, and material properties of drill cores and crustal resistivity was conducted. In particular, the Nojima–Hirabayashi borehole was drilled to a depth of 1838 m and directly intersected the Nojima Fault, and three possible fault strands were detected at depths of 1140 m, 1313 m and 1800 m. Major results obtained from this study include the following: (i) shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults; (ii) from the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300°C; (iii) cores were classified into five types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified; (iv) country rock is characterized by a very low permeability and high strength; and (v) resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 10 (2001), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The 1995 Hyogo-ken Nanbu (Kobe) earthquake, M7.2, occurred along the north-east–south-west trending Rokko–Awaji Fault system. Three boreholes of 1001 m, 1313 m and 1838 m deep were drilled in the vicinity of the epicenter of the earthquake. Each borehole is located at characteristic sites in relation to active faults and the aftershock distribution. In particular, the Nojima–Hirabayashi borehole [Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drilling] in Awaji Island was drilled to a depth of 1838 m, approximately 320 m southeast from the surface rupture of the Nojima Fault, and it crosses fracture zones below a depth of 1140 m. In situ stress measurements by the hydraulic fracturing method were conducted in these boreholes within 1.5 years after the earthquake. Measurement results suggest the following: (i) Differential stress values are very small, approximately 10 MPa at a depth of 1000 m at each site; (ii) the orientation of maximum horizontal compression is almost the same in the boreholes, perpendicular to the surface trace of the faults, north-west–south-east; (iii) fault types estimated from the state of stress differ among these sites; and (iv) the differential stress value just beneath the fault fracture zone decreases abruptly to one-half of that above the fault zone in the Hirabayashi NIED drilling. These features support the idea that the shear stress along the Rokko–Awaji Fault system decreased to a low level just after the earthquake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract A 1800 m deep borehole was drilled at Nojima Hirabayashi, Japan to penetrate through the Nojima Fault, which was activated at the time of the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake). Three fracture zones were recognized in cores at approximate depths of 1140 m, 1300 m and 1800 m. The mode of distribution of fault rocks, minerals and chemical elements were analyzed in an interval between depths of 1108 m and 1161 m, focusing on the fracture zone at the depth of 1140 m. Foliated blue-gray fault gouge constituted the central part of the fracture zone. The degree of fracturing appeared to be greater in the hanging wall than in the footwall. The relative amounts of minerals were estimated qualitatively. In the analyzed interval, not only were quartz, orthoclase, plagioclase, biotite and hornblende detected in the parent rock (granodiorite), but also kaolinite, smectite, laumontite, stilbite, calcite, ankerite and siderite, which are related to hydrothermal alteration. In particular, biotite disappeared both in the hanging wall and footwall across the central fault zone; it disappeared over a wider range in the hanging wall than in the footwall. The amounts of major chemical elements were analyzed quantitatively. Concentrations of Al2O3, Fe2O3, MnO, TiO2, and P2O5 all decreased throughout the interval except at some points. H2O+ and CO2 increased throughout the interval. Na2O increased in the region outside the central plane, whereas MgO and CaO increased in the hanging wall and decreased in the footwall. SiO2 and K2O decreased in the hanging wall and increased in the footwall. These results elucidate the higher degree of fracturing and chemical changes present in the hanging wall of the 1140 m fracture zone than in the footwall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; Heat flow; LATITUDE; LONGITUDE; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 102 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Number of conductivity measurements; Number of temperature data; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Method comment; Number; Number of conductivity measurements; Number of temperature data; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...