ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-23
    Description: Foraminifera are unicellular protists, primarily known for their calcium carbonate shells that provide an extensive fossil record. This record, ranging from Cambrian to Present shows both major shifts and gradual changes in the relative occurrence of taxa producing different polymorphs of carbonate. Here we present evidence for coupling between shifts in calcite- versus aragonite-producing species and periods with respectively low and high seawater Mg/Ca throughout the Phanerozoic. During periods when seawater Mg/Ca is 〈2 mol/mol, low-Mg calcite producing species dominate the foraminiferal community. Vice versa, high-Mg calcite and aragonite-producing species are more abundant during periods with relatively high seawater Mg/Ca. This alteration in dominance of the phase precipitated is due to selective recovery of groups producing the favorable polymorph after shifts from calcite to aragonite seas. In addition, relatively high extinction rates of species producing the mineral phase not favored by the seawater Mg/Ca of that time may be responsible for this alteration. These results imply that the current high seawater Mg/Ca will, in the long term, favor prevalence of high-Mg and aragonite-producing foraminifera over calcite producing taxa, possibly shifting the balance towards a community in which calcite-production is less dominant.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-09
    Description: Relative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX(86) record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude approximately 65 degrees S). We show that southwest Pacific SSTs rose above present-day tropical values (to approximately 34 degrees C) during the Early Eocene age ( approximately 53 Myr ago) and had gradually decreased to about 21 degrees C by the early Late Eocene age ( approximately 36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration, additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bijl, Peter K -- Schouten, Stefan -- Sluijs, Appy -- Reichart, Gert-Jan -- Zachos, James C -- Brinkhuis, Henk -- England -- Nature. 2009 Oct 8;461(7265):776-9. doi: 10.1038/nature08399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Palaeoecology, Institute of Environmental Biology, Faculty of Science, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands. p.k.bijl@uu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812670" target="_blank"〉PubMed〈/a〉
    Keywords: Antarctic Regions ; Biological Evolution ; Climate ; Geologic Sediments/analysis/chemistry ; History, Ancient ; Ice Cover ; Oxygen Isotopes ; Pacific Ocean ; Plankton/metabolism ; Seawater/*analysis ; *Temperature ; Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-06
    Description: The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO(2)). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO(2) and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3 degrees to 6 degrees C. Reconstructions of pCO(2) indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO(2) trends during the MECO suggests that elevated pCO(2) played a major role in global warming during the MECO.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bijl, Peter K -- Houben, Alexander J P -- Schouten, Stefan -- Bohaty, Steven M -- Sluijs, Appy -- Reichart, Gert-Jan -- Sinninghe Damste, Jaap S -- Brinkhuis, Henk -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):819-21. doi: 10.1126/science.1193654.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomarine Sciences, Institute of Environmental Biology, Faculty of Science, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands. p.k.bijl@uu.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051636" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract We present a multi‐proxy (foraminifer Mg/Ca, δ18O, ∆47, and Sr/Ca, and biomarker TEX86H, MATmrs) low‐resolution paleotemperature record based on seven sets of high‐resolution time series from the late Cretaceous to Miocene from the Ocean Drilling Program Bass River site, New Jersey Shelf, North Atlantic. Along with insight into long‐term climate evolution, this allows testing for internal consistency between proxies. The bottom water temperatures (BWT) reconstructed using benthic δ18O and Mg/Ca‐values show good agreement in recorded trends with the TEX86H sea surface and shallow subsurface temperature record, and with the stacked global benthic oxygen isotope record. The Mg/Ca‐based BWTs are higher than the δ18O‐based BWTs, likely due to uncertainty in the assumptions associated with the Mg/Ca calibration to sea water Mg/Ca. Absolute δ18O‐based BWT reconstructions are supported by clumped isotope paleothermometry. The agreement in main trends of the independent paleotemperature proxies indicates that the underlying assumed mechanisms for the different proxy relations to temperature stayed largely intact back to at least 90 Ma. Consistent differences in absolute temperature values highlight however, that a better understanding of the individual proxies is required in order to achieve accurate absolute temperature reconstructions.
    Print ISSN: 0883-8305
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-01-31
    Description: The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haig, Jordahna -- Nott, Jonathan -- Reichart, Gert-Jan -- England -- Nature. 2014 Jan 30;505(7485):667-71. doi: 10.1038/nature12882.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Earth and Environmental Sciences, James Cook University, Cairns, Queensland 4870, Australia. ; 1] Department of Geochemistry, Utrecht University, Utrecht 3508 TA, The Netherlands [2] Geology Department, Royal Netherlands Institute for Sea Research, Den Hoorn (Texel) 1797 SZ, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476890" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; Australia ; Carbon Isotopes ; Carbonates/analysis/chemistry ; Cyclonic Storms/*statistics & numerical data ; Global Warming/statistics & numerical data ; History, 15th Century ; History, 16th Century ; History, 17th Century ; History, 18th Century ; History, 19th Century ; History, 20th Century ; History, 21st Century ; History, Ancient ; History, Medieval ; Human Activities ; Oxygen Isotopes ; Pacific Ocean ; Rain ; Seasons ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-23
    Description: The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 x 10(3) gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruhl, Micha -- Bonis, Nina R -- Reichart, Gert-Jan -- Sinninghe Damste, Jaap S -- Kurschner, Wolfram M -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):430-4. doi: 10.1126/science.1204255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Palaeoecology, Institute of Environmental Biology, Faculty of Science, Utrecht University, Budapestlaan 4, NL-3584 CD, Utrecht, Netherlands. micharuhl@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778394" target="_blank"〉PubMed〈/a〉
    Keywords: Alkanes/chemistry ; Atmosphere/*chemistry ; Biodiversity ; Carbon Cycle ; Carbon Dioxide/analysis ; Carbon Isotopes/*analysis ; *Climate Change ; *Ecosystem ; *Extinction, Biological ; Geologic Sediments/chemistry ; Methane/*analysis ; Plants/chemistry ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-06-27
    Description: Ecosystem metabolism of lakes strongly depends on the relative importance of local vs. allochthonous carbon sources and on microbial food-web functioning and structure. Over the year ecosystem metabolism varies as a result of seasonal changes in environmental parameters such as nutrient levels, light, temperature, and variability in the food web. This is reflected in isotopic compositions of phytoplankton and bacteria. Here, we present the results of a 17-month study on carbon dynamics in two basins of Lake Naarden, The Netherlands. One basin was restored after anthropogenic eutrophication, whereas the other basin remained eutrophic. We analyzed natural stable carbon isotope abundances ( δ 13 C) of dissolved inorganic carbon, dissolved organic carbon and macrophytes, and combined these data with compound-specific δ 13 C analyses of phospholipid-derived fatty acids, produced by phytoplankton and bacteria. Isotopic fractionation ( ε ) between phytoplankton biomass and CO 2(aq) was similar for diatoms and other eukaryotic phytoplankton, and differences between sampling sites were small. Highest ε values were observed in winter with values of 23.5 ± 0.6‰ for eukaryotic phytoplankton and 13.6 ± 0.3‰ for cyanobacteria. Lowest ε values were observed in summer: 10.5 ± 0.3‰ for eukaryotic phytoplankton and 2.7 ± 0.1‰ for cyanobacteria. The annual range in δ 13 C bact was between 6.9‰ and 8.2‰ for the restored and eutrophic basin, respectively, while this range was between 11.6‰ and 13.1‰ for phytoplankton in the restored and eutrophic basin, respectively. Correlations between δ 13 C phyto and δ 13 C bact were strong at both sites. During summer and fall, bacterial biomass derives mainly from locally produced organic matter, with minor allochthonous contributions. Conversely, during winter, bacterial dependence on allochthonous carbon was 39–77% at the restored site, and 17–46% at the eutrophic site.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-25
    Description: Whereas several well established proxies are available for reconstructing past temperatures, salinity remains challenging to assess. Reconstructions based on the combination of (in-)organic temperature proxies and foraminiferal stable oxygen isotopes result in relatively large uncertainties, which may be reduced by application of a direct salinity proxy. Cultured benthic and planktonic foraminifera showed that Na incorporation in foraminiferal shell calcite provides a potential independent proxy for salinity. Here we present the first field calibration of such a potential proxy. Living planktonic foraminiferal specimens from the Red Sea surface waters were collected and analyzed for their Na/Ca content using LA-ICP-MS. Using the Red Sea as a natural laboratory, the calibration covers a broad range of salinities over a steep gradient within the same water mass. For both G. ruber and G. sacculifer calcite Na/Ca increases with salinity, albeit with a relatively large intra- and inter-specimen variability. The field-based calibration is similar for both species from a salinity of ~36.8 up to ~39.6, while values for G. sacculifer deviate from this trend in the northernmost transect. It is hypothesized that the foraminifera in the northernmost part of the Red Sea are (partly) expatriated and hence should be excluded from the Na/Ca-salinity calibration. Incorporation of Na in foraminiferal calcite therefore provides a potential proxy for salinity, although species specific calibrations are still required and more research on the effect of temperature is needed.
    Print ISSN: 0883-8305
    Electronic ISSN: 1944-9186
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-26
    Description: The state of Atlantic Meridional Overturning Circulation (AMOC) is influenced by both the strength and the location of the Mediterranean Outflow (MOW) plume in the Gulf of Cadiz (Gulf of Cadiz). To evaluate the influence of MOW on AMOC over deglaciations, precise and accurate salinity and temperature reconstructions are needed. For this purpose, we measured Mg/Ca and clumped isotopes of several benthic foraminiferal species at IODP Site U1390 in the Gulf of Cadiz. The clumped isotope results of Cibicidoides pachyderma , Uvigerina mediterranea and Pyrgo spp. are consistent between species and record no significant difference in Glacial to Holocene DWT. Over the deglaciation, the Mg/Ca-based temperatures derived from U. mediterranea indicate three periods of MOW absence at site U1390. Mg/Ca-based temperatures of Hoeglundina elegans and C. pachyderma are on average 6 °C too cold when compared to the present core-top temperature, which we explain by a carbonate ion effect on these epibenthic species related to the high alkalinity of the MOW. Combining DWT estimates with the benthic oxygen isotope data and considering different relationships between seawater oxygen isotopes and salinity, we infer a salinity decrease of MOW by 3 to 8 units over the deglaciation, and 4 units during S1, accounting for the global δ 18 O depletion due to the decrease in ice volume. Our findings confirm that the Mediterranean Sea accumulates excess salt during a glacial low stand, and suggest that this salt surged into the Atlantic over the deglaciation, presumably during HS1.
    Print ISSN: 0883-8305
    Electronic ISSN: 1944-9186
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...