ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract.  Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 84 (1983), S. 382-389 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract This paper presents a method for the systematic trace element modelling of a cogenetic suite of lavas. It is based on the geochemical inversion technique of Allègre and coworkers and utilizes the variations in the trace element concentrations of the lavas to calculate initial concentrations and source mineralogy. We reduce this inversion to a simple, step-by-step procedure: (1) correcting for fractional crystallization; (2) testing the inferred primary melt compositions for consistency with a model of equilibrium partial melts (with constant partition coefficients) formed from identical sources; (3) estimating the proportions of mineral phases entering the melt; (4) computing concentrations and bulk partition coefficients in the initial source relative to the concentration of a common reference element; (5) estimating relative mineral abundances in the source. Except for the fractionation correction, the calculations are done element by element using a direct analytic solution. For the purpose of comparison we apply this method to the same set of data used by Minster and Allègre (1978), a suite of lavas from Grenada (lesser Antilles) originally analyzed by Shimizu and Arculus (1975). The results of both methods agree well for the source abundances of the light REE, whereas the heavy REE abundances are shown to be poorly constrained by the data. Both methods require residual clinopyroxene and garnet in the source, but the ratio of these minerals is not well constrained. We are unable to reproduce the shape of D0 pattern (=bulk partition coefficients of the initial source) given by Minster and Allègre. The reason for this cannot be evaluated without repeating their calculations in detail. The set of data from Grenada is useful for comparison of the methods only, because it is now known from isotopic data that the samples are not truly cogenetic. Possibly better suited sets of samples for petrogenetic modelling are presented in parts II and III of this series.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 105 (1990), S. 369-380 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Sr and Nd isotopic ratios of Central American volcanics can be described by the mixing of four components, marine sediment from DSDP Site 495, MORB-source mantle (DM), EMORB-source mantle (EM), and continental crust. Most of the isotopic data define a trend between EM and a modified mantle (MM) formed as a mixture of DM and less than 0.5% marine sediment, or fluid derived there from. The MM to EM trend is equally apparent in the incompatible-element data and is most clearly seen in a Ba/La versus La/Yb plot. A hyperbolic trend connects high Ba/La and low La/Yb at the MM end of the trend to low Ba/La and high La/Yb at the EM end. Smooth regional variations in incompatible-element and isotopic ratios correlate with the dip of the subducted slab beneath the volcanic front and the volume of lava erupted during the last 100,000 years (volcanic flux). Steep dip and low flux characterize the MM end-member and shallow dip and high flux characterize the EM end-member. The simplest model to explain the linked tectonic and geochemical data involves melting in the wedge by two distinct mechanisms, followed by mixing between the two magmas. In one case, EM magma is generated by decompression of EM plus DM asthenosphere, which is drawn in and up toward the wedge corner. EM mantle is preferentially melted to small degrees because of the presence of low melting components. The second melt is formed by release of fluid from the subducted slab beneath the volcanic front to form MM magma. Mixing between EM and MM magmas is controlled by subduction angle, which facilitates delivery of EM magma to the volcanic front at low-dip angles and impedes it at steep-dip angles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-02
    Description: Volcanism across the North Tanzanian Divergence Zone (NTD), part of the East African Rift System, occurred episodically from the late Miocene to Recent. Here, we present a summary of previously published K–Ar and 40 Ar/ 39 Ar ages, new 40 Ar/ 39 Ar ages, and geochemical and Sr–Nd–Pb isotopic analyses on samples collected from several volcanoes distributed across the NTD: Burko, Monduli, Tarosero, Ketumbeine, Gelai, Kerimasi and Meru. The locus of volcanism over this period progressed from the southwestern portion of the NTD to the north and east, with a main pulse occurring at about 2.3 Ma, possibly marking the inception of a main rifting event. We model the source of the NTD volcanic rocks as a metasomatized subcontinental lithospheric mantle that includes minor and variable amounts of garnet and amphibole. REE data indicate variations in residual garnet content, consistent with varying depth of melt separation. Radiogenic isotopic data show systematic variations requiring the involvement of up to three components. Two alternative but not exclusive tectonic scenarios are proposed: one requiring the involvement of contributions from recent plume-related fluids, and one explaining the observed geochemical variations by melting of a lithosphere layered by multiple metasomatic events. Supplementary material: Details of analytical methods, operating system and calibration methods, a summary table of the recalculated 40 Ar/ 39 Ar and K–Ar NTD ages, a complete set of detailed release spectra analysis and dating figures, 40 Ar/ 39 Ar incremental heating data and analytical conditions, and examples of NTD calculated fractional crystallization modes are available at http://www.geolsoc.org.uk/SUP18813 .
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-29
    Description: We used cores and logs from Integrated Ocean Drilling Program (IODP) Expedition 313 to generate biostratigraphic, lithofacies, biofacies, and geochemical data that constrain the ages and paleoenvironments of Pleistocene sequences. We integrate sequence stratigraphy on cores with new seismic stratigraphic data to interpret the Pleistocene history of the Hudson shelf valley and paleoenvironmental and sea-level changes on the inner to middle continental shelf. Improved age control compared to previous studies is provided by integrated calcareous nannofossil biostratigraphy, Sr isotopic stratigraphy, and amino acid racemization. We recognize four upper Pleistocene–Holocene sequences: sequence uP1 is correlated with Marine Isotope Chrons (MIC; "chron" is the correct stratigraphic term for a time unit, not "stage") 7 or 5e, sequence uP2 with MIC 5c, sequence uP3 with MIC 5a, and sequence uP4 with the latest Pleistocene to Holocene (MIC 1–2). However, within our age resolution it is possible that sequences uP2 and uP3 correlate with MIC 4–3c and 3a, respectively, as suggested by previous studies. Lower Pleistocene sequences lP1 and lP2 likely correlate with peak interglacials (e.g., MIC 31 and MIC 45 or 47, respectively). Thus, we suggest that preservation of sequences occurs only during peak eustatic events (e.g., MIC 45 or 47, MIC 31, and MIC 5), unless they are preserved in eroded valleys. The architecture of the Pleistocene deposits at Sites M27 and M29 is one of thin remnants of highstand and transgressive systems tracts, with lowstand deposits only preserved in the thalwegs of incised valleys. Incised valleys at the bases of sequences uP3 (IODP Site M27) and uP2 (IODP Site M29) document more southward courses of the paleo–Hudson valley, compared to the more southeastward course of the MIC 1–2 paleo–Hudson valley. The patchy distribution of Pleistocene sequences beneath the New Jersey inner-middle continental shelf is due to low accommodation during an interval of large eustatic changes; this predicts that sequences in such settings will be discontinuous, patchy, and difficult to correlate, consistent with previous studies in Virginia and North Carolina.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-04
    Description: Integrated Ocean Drilling Program Expedition 313 continuously cored and logged latest Eocene to early-middle Miocene sequences at three sites (M27, M28, and M29) on the inner-middle continental shelf offshore New Jersey, providing an opportunity to evaluate the ages, global correlations, and significance of sequence boundaries. We provide a chronology for these sequences using integrated strontium isotopic stratigraphy and biostratigraphy (primarily calcareous nannoplankton, diatoms, and dinocysts [dinoflagellate cysts]). Despite challenges posed by shallow-water sediments, age resolution is typically ±0.5 m.y. and in many sequences is as good as ±0.25 m.y. Three Oligocene sequences were sampled at Site M27 on sequence bottomsets. Fifteen early to early-middle Miocene sequences were dated at Sites M27, M28, and M29 across clinothems in topsets, foresets (where the sequences are thickest), and bottomsets. A few sequences have coarse (~1 m.y.) or little age constraint due to barren zones; we constrain the age estimates of these less well dated sequences by applying the principle of superposition, i.e., sediments above sequence boundaries in any site are younger than the sediments below the sequence boundaries at other sites. Our age control provides constraints on the timing of deposition in the clinothem; sequences on the topsets are generally the youngest in the clinothem, whereas the bottomsets generally are the oldest. The greatest amount of time is represented on foresets, although we have no evidence for a correlative conformity. Our chronology provides a baseline for regional and interregional correlations and sea-level reconstructions: (1) we correlate a major increase in sedimentation rate precisely with the timing of the middle Miocene climate changes associated with the development of a permanent East Antarctic Ice Sheet; and (2) the timing of sequence boundaries matches the deep-sea oxygen isotopic record, implicating glacioeustasy as a major driver for forming sequence boundaries.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...